OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 7 — Mar. 26, 2012
  • pp: 7095–7100

Co-sputtered SiC + Ag nanomixtures as visible wavelength negative index metamaterials

G. Nehmetallah, R. Aylo, P. Powers, A. Sarangan, J. Gao, H. Li, A. Achari, and P. P. Banerjee  »View Author Affiliations


Optics Express, Vol. 20, Issue 7, pp. 7095-7100 (2012)
http://dx.doi.org/10.1364/OE.20.007095


View Full Text Article

Enhanced HTML    Acrobat PDF (960 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The fabrication and characterization of a novel metamaterial that shows negative index in the visible (blue) is reported. The real part of the negative index of this metamaterial at 405 nm, comprising co-sputtered SiC + Ag nanoparticle mixture on a glass substrate, is deduced from results of double Michelson interferometry setup which shows a negative phase delay. It is numerically verified that this metamaterial can yield near-field super-resolution imaging for both TE and TM polarizations.

© 2012 OSA

OCIS Codes
(120.3180) Instrumentation, measurement, and metrology : Interferometry
(240.6680) Optics at surfaces : Surface plasmons
(160.3918) Materials : Metamaterials

ToC Category:
Metamaterials

History
Original Manuscript: January 4, 2012
Revised Manuscript: February 9, 2012
Manuscript Accepted: February 28, 2012
Published: March 13, 2012

Citation
G. Nehmetallah, R. Aylo, P. Powers, A. Sarangan, J. Gao, H. Li, A. Achari, and P. P. Banerjee, "Co-sputtered SiC + Ag nanomixtures as visible wavelength negative index metamaterials," Opt. Express 20, 7095-7100 (2012)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-7-7095


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. H. I. Smith, “Fabrication techniques for surface-acoustic wave and thin-film optical devices,” Proc. IEEE 62(10), 1361–1387 (1974). [CrossRef]
  2. N. Fang, H. Lee, C. Sun, X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science 308(5721), 534–537 (2005). [CrossRef] [PubMed]
  3. S. W. Hell, J. Wichmann, “Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy,” Opt. Lett. 19(11), 780–782 (1994). [CrossRef] [PubMed]
  4. V. G. Veselago, “The electrodynamics of substances with simultaneously negative values of ε and μ,” Sov. Phys. Usp. 10, 509–514 (1968).
  5. J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85(18), 3966–3969 (2000). [CrossRef] [PubMed]
  6. R. A. Shelby, D. R. Smith, S. Schultz, “Experimental verification of a negative index of refraction,” Science 292(5514), 77–79 (2001). [CrossRef] [PubMed]
  7. P. P. Banerjee, G. Nehmetallah, R. Aylo, S. Rogers, “Nanoparticle-Dispersed Metamaterial Sensors for Adaptive Coded Aperture Imaging (ACAI) applications,” Proc. SPIE 8165, 81651G (2011).
  8. N. Limberopoulos, A. Akyurtlu, K. Higginson, A.-G. Kussow, C. D. Merritt, “Negative refractive index metamaterials in the visible spectrum based on MgB2/SiC composites,” Appl. Phys. Lett. 95(2), 023306 (2009). [CrossRef]
  9. A.-G. Kussow, A. Akyurtlu, A. Semichaevsky, N. Angkawisittpan, “MgB2-based negative refraction index metamaterial at visible frequencies: Theoretical analysis,” Phys. Rev. B 76(19), 195123 (2007). [CrossRef]
  10. G. Dolling, C. Enkrich, M. Wegener, C. M. Soukoulis, S. Linden, “Simultaneous negative phase and group velocity of light in a metamaterial,” Science 312(5775), 892–894 (2006). [CrossRef] [PubMed]
  11. B. C. Mohanty, S. Kasiviswanathan, “Two-prism setup for surface plasmon resonance studies,” Rev. Sci. Instrum. 76(3), 033103 (2005). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited