OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 7 — Mar. 26, 2012
  • pp: 7101–7111

Bandwidth enhancement of waveguide-coupled photodetectors with inductive gain peaking

Michael Gould, Tom Baehr-Jones, Ran Ding, and Michael Hochberg  »View Author Affiliations

Optics Express, Vol. 20, Issue 7, pp. 7101-7111 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (1300 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Silicon has recently attracted a great deal of interest as an economical platform for integrated photonics systems. Integrated photodetectors are a key component of such systems, and CMOS-compatible processes involving epitaxially grown germanium for photodetection have been demonstrated. Detector parasitic capacitance is a key limitation, which will likely worsen if techniques such as bump bonding are employed. Here we propose leveraging the complexity available in silicon photonics processes to compensate for this using a technique known as gain peaking. We predict that by simply including an inductor and capacitor in the photodetector circuit with the properly chosen values, detector bandwidths can be as much as doubled, with no undesired effects.

© 2012 OSA

OCIS Codes
(040.6070) Detectors : Solid state detectors
(130.0130) Integrated optics : Integrated optics
(250.0250) Optoelectronics : Optoelectronics
(060.5625) Fiber optics and optical communications : Radio frequency photonics

ToC Category:

Original Manuscript: February 3, 2012
Revised Manuscript: March 5, 2012
Manuscript Accepted: March 6, 2012
Published: March 13, 2012

Michael Gould, Tom Baehr-Jones, Ran Ding, and Michael Hochberg, "Bandwidth enhancement of waveguide-coupled photodetectors with inductive gain peaking," Opt. Express 20, 7101-7111 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. B. Jalali, S. Fathpour, “Silicon photonics,” J. Lightwave Technol. 24(12), 4600–4615 (2006). [CrossRef]
  2. R. Soref, “The past, present and future of silicon photonics,” IEEE J. Sel. Top. Quantum Electron 12(6), 1678–1687 (2006). [CrossRef]
  3. M. Hochberg, T. Baehr-Jones, “Towards fabless silicon photonics,” Nat. Photonics 4(8), 492–494 (2010). [CrossRef]
  4. H. Ito, T. Furuta, S. Kodama, T. Ishibashi, “InP/InGaAs uni-travelling-carrier photodiode with 310 GHz bandwidth,” Electron. Lett. 36(21), 1809–1810 (2000). [CrossRef]
  5. K. Shinoda, S. Makino, T. Kitatani, T. Shiota, T. Fukamachi, M. Aoki, “InGaAlAs-InGaAsP heteromaterial monolithic integration for advanced long-wavelength optoelectronic devices,” IEEE J. Quantum Electron. 45(9), 1201–1209 (2009). [CrossRef]
  6. M. Doi, M. Sugiyama, K. Tanaka, M. Kawai, “Advanced LiNbO3 optical modulators for broadband optical communications,” IEEE J. Sel. Top. Quantum Electron. 12(4), 745–750 (2006). [CrossRef]
  7. J. S. Orcutt, R. J. Ram, “Photonic device layout within the foundry CMOS design environment,” IEEE Photon. Technol. Lett. 22(8), 544–546 (2010). [CrossRef]
  8. N.-N. Feng, P. Dong, D. Zheng, S. Liao, H. Liang, R. Shafiiha, D. Feng, G. Li, J. E. Cunningham, A. V. Krishnamoorthy, M. Asghari, “Vertical p-i-n germanium photodetector with high external responsivity integrated with large core Si waveguides,” Opt. Express 18(1), 96–101 (2010). [CrossRef] [PubMed]
  9. S. Liao, N.-N. Feng, D. Feng, P. Dong, R. Shafiiha, C.-C. Kung, H. Liang, W. Qian, Y. Liu, J. Fong, J. E. Cunningham, Y. Luo, M. Asghari, “36 GHz submicron silicon waveguide germanium photodetector,” Opt. Express 19(11), 10967–10972 (2011). [CrossRef] [PubMed]
  10. T. Yin, R. Cohen, M. M. Morse, G. Sarid, Y. Chetrit, D. Rubin, M. J. Paniccia, “31 GHz Ge n-i-p waveguide photodetectors on Silicon-on-Insulator substrate,” Opt. Express 15(21), 13965–13971 (2007). [CrossRef] [PubMed]
  11. L. Chen, P. Dong, M. Lipson, “High performance germanium photodetectors integrated on submicron silicon waveguides by low temperature wafer bonding,” Opt. Express 16(15), 11513–11518 (2008). [CrossRef] [PubMed]
  12. S. Assefa, F. Xia, S. W. Bedell, Y. Zhang, T. Topuria, P. M. Rice, Y. A. Vlasov, “CMOS-integrated high-speed MSM germanium waveguide photodetector,” Opt. Express 18(5), 4986–4999 (2010). [CrossRef] [PubMed]
  13. L. Vivien, M. Rouvière, J.-M. Fédéli, D. Marris-Morini, J.-F. Damlencourt, J. Mangeney, P. Crozat, L. El Melhaoui, E. Cassan, X. Le Roux, D. Pascal, S. Laval, “High speed and high responsivity germanium photodetector integrated in a Silicon-On-Insulator microwaveguide,” Opt. Express 15(15), 9843–9848 (2007). [CrossRef] [PubMed]
  14. C. Gunn, “CMOS photonics for high-speed interconnects,” IEEE Micro 26(2), 58–66 (2006). [CrossRef]
  15. E. D. Palik,.Handbook of Optical Constants of Solids (Elsevier 1998) pp. 471–478.
  16. M. Morse, O. Dosunmu, T. Yin, Y. Kang, H. D. Liu, G. Sarid, E. Ginsburg, R. Cohen, S. Litski, M. Zadka, “Performance of Ge/Si receivers at 1310 nm,” Physica E 41(6), 1076–1081 (2009). [CrossRef]
  17. L. Chen, M. Lipson, “Ultra-low capacitance and high speed germanium photodetectors on silicon,” Opt. Express 17(10), 7901–7906 (2009). [CrossRef] [PubMed]
  18. M. Oehme, J. Werner, E. Kasper, M. Jutzi, M. Berroth, “High bandwidth Ge pin photodetector integrated on Si,” Appl. Phys. Lett. 89(7), 071117 (2006). [CrossRef]
  19. C. T. DeRose, D. C. Trotter, W. A. Zortman, A. L. Starbuck, M. Fisher, M. R. Watts, P. S. Davids, “Ultra compact 45 GHz CMOS compatible Germanium waveguide photodiode with low dark current,” Opt. Express 19(25), 24897–24904 (2011). [CrossRef] [PubMed]
  20. A. Mekis, S. Gloeckner, G. Masini, A. Narasimha, T. Pinguet, S. Sahni, P. De Dobbelaere, “A grating-coupler-enabled CMOS photonics platform,” IEEE J. Sel. Top. Quantum Electron 17(3), 597–608 (2011). [CrossRef]
  21. H. D. Thacker, Y. Luo, J. Shi, I. Shubin, J. Lexau, X. Zheng, G. Li, J. Yao, J. Costa, T. Pinguet, A. Mekis, P. Dong, S. Liao, D. Feng, M. Asghari, R. Ho, K. Raj, J. G. Mitchell, A. V. Krishnamoorthy, and J. E. Cunningham, “Flip-chip integrated silicon photonic bridge chips for sub-picojoule per bit optical links,” IEEE Electronic Components and Technology Conference, 240–246 (2010).
  22. K. Washio, E. Ohue, H. Shimamoto, K. Oda, R. Hayami, Y. Kiyota, M. Tanabe, M. Kondo, T. Hashimoto, T. Harada, “A 0.2-μm 180-GHz-fmax 6.7-ps-ECL SOI/HRS self-aligned SEG SiGe HBT/CMOS technology for microwave and high-speed digital applications,” IEEE Trans. Electron. Dev. 49(2), 271–278 (2002). [CrossRef]
  23. Y.-H. Wu, W.-Y. Ou, C.-C. Lin, J.-R. Wu, M.-L. Wu, L.-L. Chen, “MIM capacitors with crystalline-stack featuring high capacitance density and low voltage coefficient,” IEEE Electron Device Lett. 33, 104–106 (2012). [CrossRef]
  24. S. Shekhar, J. S. Walling, D. J. Allstot, “Bandwidth extension techniques for CMOS amplifiers,” IEEE J. Solid-St, Circulation 41, 2424–2439 (2006).
  25. S. S. Mohan, M. del Mar Hershenson, S. P. Boyd, T. H. Lee, “Bandwidth extension in CMOS with optimized on-chip inductors,” IEEE J. Solid-State Circulation 35, 346–355 (2000).
  26. B. Razavi Microelectronics, (Prentice-Hall, 1998).
  27. W. S. C. Chang, RF Photonic Technology in Optical Links (Cambridge University Press, 2002).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited