OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 7 — Mar. 26, 2012
  • pp: 7112–7118

Spheroidal Fabry-Perot microcavities in optical fibers for high-sensitivity sensing

F. C. Favero, L. Araujo, G. Bouwmans, V. Finazzi, J. Villatoro, and V. Pruneri  »View Author Affiliations


Optics Express, Vol. 20, Issue 7, pp. 7112-7118 (2012)
http://dx.doi.org/10.1364/OE.20.007112


View Full Text Article

Enhanced HTML    Acrobat PDF (938 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

All-optical-fiber Fabry-Perot interferometers (FPIs) with microcavities of different shapes were investigated. It was found that the size and shape of the cavity plays an important role on the performance of these interferometers. To corroborate the analysis, FPIs with spheroidal cavities were fabricated by splicing a photonic crystal fiber (PCF) with large voids and a conventional single mode fiber (SMF), using an ad hoc splicing program. It was found that the strain sensitivity of FPIs with spheroidal cavities can be controlled through the dimensions of the spheroid. For example, a FPI whose cavity had a size of ~10x60 μm exhibited strain sensitivity of ~10.3 pm/με and fringe contrast of ~38 dB. Such strain sensitivity is ~10 times larger than that of the popular fiber Bragg gratings (~1.2 pm/με) and higher than that of most low-finesse FPIs. The thermal sensitivity of our FPIs is extremely low (~1pm/°C) due to the air cavities. Thus, a number of temperature-independent ultra-sensitive microscopic sensors can be devised with the interferometers here proposed since many parameters can be converted to strain. To this end, simple vibration sensors are demonstrated.

© 2012 OSA

OCIS Codes
(060.2370) Fiber optics and optical communications : Fiber optics sensors
(120.2230) Instrumentation, measurement, and metrology : Fabry-Perot
(120.3180) Instrumentation, measurement, and metrology : Interferometry
(280.4788) Remote sensing and sensors : Optical sensing and sensors
(060.5295) Fiber optics and optical communications : Photonic crystal fibers

ToC Category:
Sensors

History
Original Manuscript: February 8, 2012
Revised Manuscript: March 7, 2012
Manuscript Accepted: March 8, 2012
Published: March 13, 2012

Citation
F. C. Favero, L. Araujo, G. Bouwmans, V. Finazzi, J. Villatoro, and V. Pruneri, "Spheroidal Fabry-Perot microcavities in optical fibers for high-sensitivity sensing," Opt. Express 20, 7112-7118 (2012)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-7-7112


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. Y.-J. Rao, “Recent progress in fiber-optic extrinsic Fabry–Perot interferometric sensors,” Opt. Fiber Technol. 12(3), 227–237 (2006). [CrossRef]
  2. J.-H. Chen, X.-G. Huang, Z.-J. Huang, “Simple thin-film fiber optic temperature sensor based on Fabry-Perot interference,” Opt. Eng. 49(4), 044402 (2010). [CrossRef]
  3. C. Lee, L. Lee, H. Hwang, J. Hsu, “Highly sensitive air-gap fiber Fabry-Perot interferometers based on polymer-filled hollow core fibers,” IEEE Photon. Technol. Lett. 24(2), 149–151 (2012). [CrossRef]
  4. N. V. Wheeler, M. D. W. Grogan, T. D. Bradley, F. Couny, T. A. Birks, F. Benabid, “Multipass hollow core-pcf microcell using a tapered micromirror,” J. Lightwave Technol. 29(9), 1314–1318 (2011). [CrossRef]
  5. S. Pevec, D. Donlagic, “All-fiber, long-active-length Fabry-Perot strain sensor,” Opt. Express 19(16), 15641–15651 (2011). [CrossRef] [PubMed]
  6. C. Tuck, R. Hague, C. Doyle, “Low cost optical fibre based Fabry–Perot strain sensor production,” Meas. Sci. Technol. 17(8), 2206–2212 (2006). [CrossRef]
  7. X. Chen, F. Shen, Z. Wang, Z. Huang, A. Wang, “Micro-air-gap based intrinsic Fabry-Perot interferometric fiber-optic sensor,” Appl. Opt. 45(30), 7760–7766 (2006). [CrossRef] [PubMed]
  8. E. Cibula, D. Donlagic, “In-line short cavity Fabry-Perot strain sensor for quasi distributed measurement utilizing standard OTDR,” Opt. Express 15(14), 8719–8730 (2007). [CrossRef] [PubMed]
  9. Y.-J. Rao, M. Deng, D.-W. Duan, X.-C. Yang, T. Zhu, G.-H. Cheng, “Micro Fabry-Perot interferometers in silica fibers machined by femtosecond laser,” Opt. Express 15(21), 14123–14128 (2007). [CrossRef] [PubMed]
  10. T. Wei, Y. Han, Y. Li, H.-L. Tsai, H. Xiao, “Temperature-insensitive miniaturized fiber inline Fabry-Perot interferometer for highly sensitive refractive index measurement,” Opt. Express 16(8), 5764–5769 (2008). [CrossRef] [PubMed]
  11. J. Sirkis, T. A. Berkoff, R. T. Jones, H. Singh, A. D. Kersey, E. J. Friebele, M. A. Putnam, “In-Line fiber etalon (ILFE) fiber-optic strain sensors,” J. Lightwave Technol. 13(7), 1256–1263 (1995). [CrossRef]
  12. Y. J. Rao, T. Zhu, X. C. Yang, D. W. Duan, “In-line fiber-optic etalon formed by hollow-core photonic crystal fiber,” Opt. Lett. 32(18), 2662–2664 (2007). [CrossRef] [PubMed]
  13. Q. Shi, Z. Wang, L. Jin, Y. Li, H. Zhang, F. Lu, G. Kai, X. Dong, “A hollow-core photonic crystal fiber cavity based multiplexed Fabry–Pérot interferometric strain sensor system,” IEEE Photon. Technol. Lett. 20(15), 1329–1331 (2008). [CrossRef]
  14. E. Li, G. D. Peng, X. Ding, “High spatial resolution fiber-optic Fizeau interferometric strain sensor based on an in-fiber spherical microcavity,” Appl. Phys. Lett. 92(10), 101117 (2008). [CrossRef]
  15. J. Villatoro, V. Finazzi, G. Coviello, V. Pruneri, “Photonic-crystal-fiber-enabled micro-Fabry-Perot interferometer,” Opt. Lett. 34(16), 2441–2443 (2009). [CrossRef] [PubMed]
  16. F. C. Favero, G. Bouwmans, V. Finazzi, J. Villatoro, V. Pruneri, “Fabry-Perot interferometers built by photonic crystal fiber pressurization during fusion splicing,” Opt. Lett. 36(21), 4191–4193 (2011). [CrossRef] [PubMed]
  17. A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15(8), 1442–1463 (1997). [CrossRef]
  18. A. Laudati, F. Mennella, M. Giordano, G. D’Altrui, C. Calisti Tassini, A. Cusano, “A fiber-optic Bragg grating seismic sensor,” IEEE Photon. Technol. Lett. 19(24), 1991–1993 (2007). [CrossRef]
  19. T. Guo, A. Ivanov, C. Chen, J. Albert, “Temperature-independent tilted fiber grating vibration sensor based on cladding-core recoupling,” Opt. Lett. 33(9), 1004–1006 (2008). [CrossRef] [PubMed]
  20. M. Kamata, M. Obara, R. R. Gattass, L. R. Cerami, E. Mazur, “Optical vibration sensor fabricated by femtosecond laser micromachining,” Appl. Phys. Lett. 87(5), 051106 (2005). [CrossRef]
  21. T. Ke, T. Zhu, Y. J. Rao, M. Deng, “Accelerometer based on all-fiber Fabry-Perot interferometer formed by hollow-core photonic crystal fiber,” Microw. Opt. Technol. Lett. 52(11), 2531–2535 (2010). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited