OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 7 — Mar. 26, 2012
  • pp: 7142–7150

Free carrier induced spectral shift for GaAs filled metallic hole arrays

Jingyu Zhang, Bin Xiang, Mansoor Sheik-Bahae, and S. R. J. Brueck  »View Author Affiliations

Optics Express, Vol. 20, Issue 7, pp. 7142-7150 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (758 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



For a GaAs filled metallic hole array on a pre-epi GaAs substrate, the free carriers, generated by three-photon absorption (3PA) assisted by strongly enhanced local fields, reduce the refractive index of GaAs in ~200-nm thick active area through band filling and free carrier absorption. Therefore, the surface plasma wave (SPW) resonance, and the related second harmonic (SH) spectrum blue shifts with increasing fluence; For the plasmonic structure on a substrate with surface defects, free carrier recombination dominates. The band gap emission spectral peak wavelength decreases 10-nm with increasing fluence, showing the transition from nonradiative-, at low excitation, to bimolecular-recombination at high carrier concentrations.

© 2012 OSA

OCIS Codes
(190.4350) Nonlinear optics : Nonlinear optics at surfaces
(310.6628) Thin films : Subwavelength structures, nanostructures

ToC Category:
Nonlinear Optics

Original Manuscript: January 23, 2012
Revised Manuscript: February 28, 2012
Manuscript Accepted: March 4, 2012
Published: March 13, 2012

Jingyu Zhang, Bin Xiang, Mansoor Sheik-Bahae, and S. R. J. Brueck, "Free carrier induced spectral shift for GaAs filled metallic hole arrays," Opt. Express 20, 7142-7150 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. M. Luther, P. K. I. Jain, T. Ewers, A. P. Alivisatos, “Localized surface plasmon resonances arising from free carriers in doped quantum dots,” Nat. Mater. 10(5), 361–366 (2011). [CrossRef] [PubMed]
  2. W. Fan, S. Zhang, B. Minhas, K. J. Malloy, S. R. J. Brueck, “Enhanced infrared transmission through subwavelength coaxial metallic arrays,” Phys. Rev. Lett. 94(3), 033902 (2005). [CrossRef] [PubMed]
  3. J. Zhang, S. Zhang, D. Li, A. Neumann, C. Hains, A. Frauenglass, S. R. J. Brueck, “Infrared transmission resonances in double layered, complementary-structure metallic Gratings,” Opt. Express 15, 8737–8744 (2007).
  4. W. Fan, S. Zhang, N.-C. Panoiu, A. Abdenour, S. Krishna, R. M. Osgood, K. J. Malloy, S. R. J. Brueck, “Second harmonic generation from a nanopatterned isotropic nonlinear material,” Nano Lett. 6(5), 1027–1030 (2006). [CrossRef]
  5. K. Chen, C. Durak, J. R. Heflin, H. D. Robinson, “Plasmon-enhanced second-harmonic generation from ionic self-assembled multilayer films,” Nano Lett. 7(2), 254–258 (2007). [CrossRef] [PubMed]
  6. F. B. P. Niesler, N. Feth, S. Linden, J. Niegemann, J. Gieseler, K. Busch, M. Wegener, “Second-harmonic generation from split-ring resonators on a GaAs substrate,” Opt. Lett. 34(13), 1997–1999 (2009). [CrossRef] [PubMed]
  7. J. Butet, J. Duboisset, G. Bachelier, I. Russier-Antoine, E. Benichou, C. Jonin, P. F. Brevet, “Optical second harmonic generation of single metallic nanoparticles embedded in a homogeneous medium,” Nano Lett. 10(5), 1717–1721 (2010). [CrossRef] [PubMed]
  8. Y. Zhang, N. K. Grady, C. Ayala-Orozco, N. J. Halas, “Three-dimensional nanostructures as highly efficient generators of second harmonic light,” Nano Lett. 11(12), 5519–5523 (2011). [CrossRef] [PubMed]
  9. W. Cai, A. P. Vasudev, M. L. Brongersma, “Electrically controlled nonlinear generation of light with plasmonics,” Science 333(6050), 1720–1723 (2011). [CrossRef] [PubMed]
  10. J. Zhang, L. Wang, S. Krishna, M. Sheik-Bahae, S. R. J. Brueck, “Saturation of the second harmonic generation from GaAs filled metallic hole arrays by nonlinear absorption,” Phys. Rev. B 83(16), 165438 (2011). [CrossRef]
  11. R. H. Ritchie, “Plasma loss by fast electrons in thin films,” Phys. Rev. 106(5), 874–881 (1957). [CrossRef]
  12. B. R. Bennett, R. A. Soref, J. A. D. Alamo, “Carrier-induced change in refractive index of InP, GaAs, and InGaAsP,” IEEE J. Quantum Electron. 26(1), 113–122 (1990). [CrossRef]
  13. J. Zhang and S. R. J. Brueck, “Multi-photon absorption and second harmonic generation in GaAs-Filled Nanoplasmonic Arrays,” in Asia Communications and Photonics Conference and Exhibition (ACP)(Academic,Shanghai, China, 2009)
  14. J. Zhang, “Metallic photonic crystals: transmission resonance and second harmonic generation,” (Ph. D thesis of University of New Mexico, 2009), Chap. 4. http://repository.unm.edu/handle/1928/10357
  15. R. Schroeder, B. Ullrich, “Absorption and subsequent emission saturation of two-photon excited materials: theory and experiment,” Opt. Lett. 27(15), 1285–1287 (2002). [CrossRef] [PubMed]
  16. J. U. Kang, A. Villeneuve, M. Sheik-Bahae, G. I. Stegeman, K. Al-hemyari, J. S. Aitchison, C. N. Ironside, “Limitation due to three-photon absorption on the useful spectral range for nonlinear optics in AlGaAs below half band gap,” Appl. Phys. Lett. 65(2), 147 (1994). [CrossRef]
  17. W. C. Hurlbut, Y.-S. Lee, K. L. Vodopyanov, P. S. Kuo, M. M. Fejer, “Multiphoton absorption and nonlinear refraction of GaAs in the mid-infrared,” Opt. Lett. 32(6), 668–670 (2007). [CrossRef] [PubMed]
  18. M. P. Hasselbeck, E. W. Van Stryland, M. Sheik-Bahae, “Scaling of four-photon absorption in InAs,” J. Opt. Soc. Am. B 14(7), 1616–1624 (1997). [CrossRef]
  19. R. Braunstein, E. O. Kane, “Valance band structure of III-V compounds,” J. Phys. Chem. Solids 23(10), 1423–1431 (1962). [CrossRef]
  20. L. D. Landau and E. M. Lifshitz, Electrodynamics of Continuous Media (Addison-Wesley, Reading, Mass., 1960), p. 260.
  21. C. H. Henry, R. A. Logan, K. A. Bertness, “Spectral dependence of the change in refractive index due to carrier injection in GaAs lasers,” J. Appl. Phys. 52(7), 4457–4461 (1981). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 5
Fig. 4 Fig. 3

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited