OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 7 — Mar. 26, 2012
  • pp: 7184–7194

Crescent shaped dielectric periodic structure for light manipulation

H. Kurt, M. Turduev, and I. H. Giden  »View Author Affiliations


Optics Express, Vol. 20, Issue 7, pp. 7184-7194 (2012)
http://dx.doi.org/10.1364/OE.20.007184


View Full Text Article

Enhanced HTML    Acrobat PDF (2506 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We present optical properties of crescent-shaped dielectric nano-rods that comprise a square lattice periodic structure named as crescent-shaped photonic crystals (CPC). The circular symmetry of individual cells of periodic dielectric structures is broken by replacing each unit cell with a reduced symmetry crescent shaped structure. The created configuration is assumed to be formed by the intersection of circular dielectric and air rods. The degree of freedom to manipulate the light propagation arises due to the rotational sensitivity of the CPC. The interesting dispersion property of designed CPC occurs due to the anisotropic nature of the iso-frequency contours that yield tilted self-collimated wave guiding. Furthermore, this feature allows focusing, routing, splitting and deflecting light beams along certain routes which are independent of the lattice symmetry directions of regular PCs. The propagation direction of light can be tuned by means of the opening angle of the crescent shape. Finally, the property of being all-dielectric structure ensures the absence of optical absorption losses that are reminiscent of employed metallic nano-particles.

© 2012 OSA

OCIS Codes
(130.0130) Integrated optics : Integrated optics
(130.2790) Integrated optics : Guided waves
(130.3120) Integrated optics : Integrated optics devices
(050.5298) Diffraction and gratings : Photonic crystals

ToC Category:
Integrated Optics

History
Original Manuscript: November 23, 2011
Revised Manuscript: February 3, 2012
Manuscript Accepted: March 11, 2012
Published: March 14, 2012

Virtual Issues
Vol. 7, Iss. 5 Virtual Journal for Biomedical Optics

Citation
H. Kurt, M. Turduev, and I. H. Giden, "Crescent shaped dielectric periodic structure for light manipulation," Opt. Express 20, 7184-7194 (2012)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-7-7184


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic Crystals: Molding the Flow of the Light (Princeton, NJ: Princeton Univ. Press, 1995).
  2. P. R. Villeneuve and M. Piche, “Photonic band gaps in two-dimensional square and hexagonal lattices,” Phys. Rev. B Condens. Matter46(8), 4969–4972 (1992). [CrossRef] [PubMed]
  3. K. M. Ho, C. T. Chan, and C. M. Soukoulis, “Existence of a photonic gap in periodic dielectric structures,” Phys. Rev. Lett.65(25), 3152–3155 (1990). [CrossRef] [PubMed]
  4. E. Yablonovitch, “Photonic band-gap structures,” J. Opt. Soc. Am. B10(2), 283–295 (1993). [CrossRef]
  5. S. G. Johnson, P. R. Villeneuve, S. Fan, and J. D. Joannopoulos, “Linear waveguides in photonic-crystal slabs,” Phys. Rev. B62(12), 8212–8222 (2000). [CrossRef]
  6. H. Kurt, I. H. Giden, and K. Ustun, “Highly efficient and broadband light transmission in 90° nanophotonic wire waveguide bends,” J. Opt. Soc. Am. B28(3), 495–501 (2011). [CrossRef]
  7. M. Lončar, J. Vučković, and A. Scherer, “Methods for controlling positions of guided modes of photonic-crystal waveguides,” J. Opt. Soc. Am. B18(9), 1362–1368 (2001). [CrossRef]
  8. H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, “Self-collimating phenomena in photonic crystals,” Appl. Phys. Lett.74(9), 1212–1214 (1999). [CrossRef]
  9. S. Foteinopoulou and C. M. Soukoulis, “Negative refraction and left-handed behavior in two-dimensional photonic crystals,” Phys. Rev. B67(23), 235107 (2003). [CrossRef]
  10. H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, “Photonic crystals for micro lightwave circuits using wavelength-dependent angular beam steering,” Appl. Phys. Lett.74(10), 1370–1372 (1999). [CrossRef]
  11. D. Chigrin, S. Enoch, C. Sotomayor Torres, and G. Tayeb, “Self-guiding in two-dimensional photonic crystals,” Opt. Express11(10), 1203–1211 (2003). [CrossRef] [PubMed]
  12. Z. Y. Li, B. Y. Gu, and G. Z. Yang, “Large absolute band gap in 2D anisotropic photonic crystals,” Phys. Rev. Lett.81(12), 2574–2577 (1998). [CrossRef]
  13. H. Kurt and D. S. Citrin, “Annular photonic crystals,” Opt. Express13(25), 10316–10326 (2005). [CrossRef] [PubMed]
  14. X. Zhu, Y. Zhang, D. Chandra, S. C. Cheng, J. M. Kikkawa, and S. Yang, “Two-dimensional photonic crystals with anisotropic unit cells imprinted from poly (dimethylsiloxane) membranes under elastic deformation,” Appl. Phys. Lett.93(16), 161911 (2008). [CrossRef]
  15. H. F. Ho, Y. F. Chau, H. Y. Yeh, and F. L. Wu, “Complete bandgap arising from the effects of hollow, veins, and intersecting veins in a square lattice of square dielectric rods photonic crystal,” Appl. Phys. Lett.98(26), 263115 (2011). [CrossRef]
  16. B. Rezaei, T. Fathollahi Khalkhali, A. Soltani Vala, and M. Kalafi, “Absolute band gap properties in two-dimensional photonic crystals composed of air rings in anisotropic tellurium background,” Opt. Commun.282(14), 2861–2869 (2009). [CrossRef]
  17. Y. Zhang, L. Kong, Z. Feng, and Z. Zheng, “PBG structures of novel two-dimensional annular photonic crystals with triangular lattice,” Optoelectron. Lett.6(4), 281–283 (2010). [CrossRef]
  18. J. Hou, D. Gao, H. Wu, and Z. Zhou, “Polarization insensitive self-collimation waveguide in square lattice annular photonic crystals,” Opt. Commun.282(15), 3172–3176 (2009). [CrossRef]
  19. H. Wu, L. Y. Jiang, W. Jia, and X. Y. Li, “Imaging properties of an annular photonic crystal slab for both TM-polarization and TE-polarization,” J. Opt.13(9), 095103 (2011). [CrossRef]
  20. H. Kurt and D. S. Citrin, “Graded index photonic crystals,” Opt. Express15(3), 1240–1253 (2007). [CrossRef] [PubMed]
  21. E. Centeno, D. Cassagne, and J. P. Albert, “Mirage and superbending effect in two-dimensional graded photonic crystals,” Phys. Rev. B73(23), 235119 (2006). [CrossRef]
  22. H. Kurt and D. S. Citrin, “A novel optical coupler design with graded-index photonic crystals,” IEEE Photon. Technol. Lett.19(19), 1532–1534 (2007). [CrossRef]
  23. C. Tan, T. Niemi, C. Peng, and M. Pessa, “Focusing effect of a graded index photonic crystal lens,” Opt. Commun.284(12), 3140–3143 (2011). [CrossRef]
  24. H. Kurt, E. Colak, O. Cakmak, H. Caglayan, and E. Ozbay, “The focusing effect of graded index photonic crystals,” Appl. Phys. Lett.93(17), 171108 (2008). [CrossRef]
  25. B. Vasić and R. Gajić, “Self-focusing media using graded photonic crystals: Focusing, Fourier transforming and imaging, directive emission, and directional cloaking,” J. Appl. Phys.110(5), 053103 (2011). [CrossRef]
  26. M. Lu, B. K. Juluri, S.-C. S. Lin, B. Kiraly, T. Gao, and T. J. Huang, “Beam Aperture Modification and Beam Deflection Using Gradient-Index Photonic Crystals,” J. Appl. Phys.108(10), 103505 (2010). [CrossRef]
  27. B. Vasić, G. Isić, R. Gajić, and K. Hingerl, “Controlling electromagnetic fields with graded photonic crystals in metamaterial regime,” Opt. Express18(19), 20321–20333 (2010). [CrossRef] [PubMed]
  28. I. Khromova and L. Melnikov, “Anisotropic photonic crystals: generalized plane wave method and dispersion symmetry properties,” Opt. Commun.281(21), 5458–5466 (2008). [CrossRef]
  29. H. Xie and Y. Y. Lu, “Modeling two-dimensional anisotropic photonic crystals by Dirichlet-to-Neumann maps,” J. Opt. Soc. Am. A26(7), 1606–1614 (2009). [CrossRef] [PubMed]
  30. B. Rezaei and M. Kalafi, “Tunable full band gap in two-dimensional anisotropic photonic crystals infiltrated with liquid crystals,” Opt. Commun.282(8), 1584–1588 (2009). [CrossRef]
  31. S. W. Leonard, J. P. Mondia, H. M. van Driel, O. Toader, S. John, K. Busch, A. Birner, U. Gösele, and V. Lehmann, “Tunable two-dimensional photonic crystals using liquid-crystal infiltration,” Phys. Rev. B61(4), R2389– R2392 (2000). [CrossRef]
  32. C. S. Kee, K. Kim, and H. Lim, “Tuning of anisotropic optical properties of two-dimensional dielectric photonic crystals,” Physica B338(1-4), 153–158 (2003). [CrossRef]
  33. T. Trifonov, L. F. Marsal, A. Rodríguez, J. Pallarès, and R. Alcubilla, “Effects of symmetry reduction in two dimensional square and triangular lattices,” Phys. Rev. B69(23), 235112 (2004). [CrossRef]
  34. R. Proietti Zaccaria, P. Verma, S. Kawaguchi, S. Shoji, and S. Kawata, “Manipulating full photonic band gaps in two dimensional birefringent photonic crystals,” Opt. Express16(19), 14812–14820 (2008). [CrossRef] [PubMed]
  35. F. Guan, Z. Lin, and J. Zi, “Opening up complete photonic bandgaps by tuning the orientation of birefringent dielectric spheres in three-dimensional photonic crystals,” J. Phys. Condens. Matter17(33), L343– L349 (2005). [CrossRef]
  36. A. I. Cabuz, E. Centeno, and D. Cassagne, “Superprism effect in bidimensional rectangular photonic crystals,” Appl. Phys. Lett.84(12), 2031–2033 (2004). [CrossRef]
  37. Y. Xu, X. J. Chen, S. Lan, Q. Guo, W. Hu, and L. J. Wu, “The all-angle self-collimating phenomenon in photonic crystals with rectangular symmetry,” J. Opt. A, Pure Appl. Opt.10(8), 085201 (2008). [CrossRef]
  38. Y. Ogawa, Y. Omura, and Y. Iida, “Study on Self-collimated light-focusing device using the 2-D Photonic Crystal with a Parallelogram Lattice,” J. Lightwave Technol.23(12), 4374–4381 (2005). [CrossRef]
  39. D. Gao, Z. Zhou, and D. S. Citrin, “Self-collimated waveguide bends and partial bandgap reflection of photonic crystals with parallelogram lattice,” J. Opt. Soc. Am. A25(3), 791–795 (2008). [CrossRef] [PubMed]
  40. P. Yeh, “Electromagnetic propagation in birefringent layered media,” J. Opt. Soc. Am.69(5), 742–756 (1979). [CrossRef]
  41. S. Johnson and J. Joannopoulos, “Block-iterative frequency-domain methods for Maxwell’s equations in a planewave basis,” Opt. Express8(3), 173–190 (2001). [CrossRef] [PubMed]
  42. D. E. Aspnes, “Local-Field Effects and Effective-Medium Theory: A microscopic perspective,” Am. J. Phys.50(8), 704–709 (1982). [CrossRef]
  43. A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method (Artech House Publishers, 2005).
  44. J. P. Berenger, “A perfectly matched layer for the absorption of electromagnetic waves,” J. Comput. Phys.114(2), 185–200 (1994). [CrossRef]
  45. A. Yariv and P. Yeh, Optical Waves in Crystals: Propagation and Control of Laser Radiation (John Wiley & Sons; Press, 1983).
  46. G. Si, A. J. Danner, S. Lang Teo, E. J. Teo, J. Teng, and A. A. Bettiol, “Photonic crystal structures with ultrahigh aspect ratio in lithium niobate fabricated by focused ion beam milling,” J. Vac. Sci. Technol. B29(2), 021205–021209 (2011). [CrossRef]
  47. J. Feng, Y. Chen, J. Blair, H. Kurt, R. Hao, D. S. Citrin, C. J. Summers, and Z. Zhou, “Fabrication of annular photonic crystals by atomic layer deposition and sacrificial etching,” J. Vac. Sci. Technol. B27(2), 568–572 (2009). [CrossRef]
  48. R. R. Panepucci, H. B. Kim, R. V. Almeida, and M. D. Jones, “Photonic crystals in polymers by direct electron-beam lithography presenting a photonic band gap,” J. Vac. Sci. Technol. B22(6), 3348–3351 (2004). [CrossRef]
  49. P. Borel, A. Harpøth, L. Frandsen, M. Kristensen, P. Shi, J. Jensen, and O. Sigmund, “Topology optimization and fabrication of photonic crystal structures,” Opt. Express12(9), 1996–2001 (2004). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Multimedia

Multimedia FilesRecommended Software
» Media 1: MOV (2311 KB)      QuickTime
» Media 2: MOV (2236 KB)      QuickTime

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited