OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 7 — Mar. 26, 2012
  • pp: 7206–7211

Transparency window for the absorptive dipole resonance in a symmetry-reduced grating structure

Zheng-Gao Dong, Pei-Gen Ni, Jie Zhu, and X. Zhang  »View Author Affiliations


Optics Express, Vol. 20, Issue 7, pp. 7206-7211 (2012)
http://dx.doi.org/10.1364/OE.20.007206


View Full Text Article

Enhanced HTML    Acrobat PDF (1126 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We demonstrate that a transparency window can be obtained within the absorptive dipole resonant regime, by slightly reducing the symmetric arrangement of a dipole-like bar grating covered by a waveguiding layer. The physical understanding is that, under the condition of reducing the grating symmetry, the lossy dipole plasmon resonance can be completely transferred into the waveguide mode in a way of destructive interference. In accompany with the tunable transparency window modulated by the symmetry-reduced displacement, an ultra high group index (slowing down the light) as well as a vortex distribution of the electromagnetic field is found.

© 2012 OSA

OCIS Codes
(160.3918) Materials : Metamaterials
(250.5403) Optoelectronics : Plasmonics

ToC Category:
Metamaterials

History
Original Manuscript: November 21, 2011
Revised Manuscript: January 20, 2012
Manuscript Accepted: March 12, 2012
Published: March 14, 2012

Citation
Zheng-Gao Dong, Pei-Gen Ni, Jie Zhu, and X. Zhang, "Transparency window for the absorptive dipole resonance in a symmetry-reduced grating structure," Opt. Express 20, 7206-7211 (2012)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-7-7206


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. E. Ozbay, “Plasmonics: merging photonics and electronics at nanoscale dimensions,” Science311(5758), 189–193 (2006). [CrossRef] [PubMed]
  2. S. Linden, C. Enkrich, M. Wegener, J. Zhou, T. Koschny, and C. M. Soukoulis, “Magnetic response of metamaterials at 100 terahertz,” Science306(5700), 1351–1353 (2004). [CrossRef] [PubMed]
  3. S. Zhang, W. Fan, K. J. Malloy, S. R. J. Brueck, N. C. Panoiu, and R. M. Osgood, “Near-infrared double negative metamaterials,” Opt. Express13(13), 4922–4930 (2005). [CrossRef] [PubMed]
  4. E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A hybridization model for the plasmon response of complex nanostructures,” Science302(5644), 419–422 (2003). [CrossRef] [PubMed]
  5. H. Liu, D. A. Genov, D. M. Wu, Y. M. Liu, Z. W. Liu, C. Sun, S. N. Zhu, and X. Zhang, “Magnetic plasmon hybridization and optical activity at optical frequencies,” Phys. Rev. B76(7), 073101 (2007). [CrossRef]
  6. D. J. Bergman and M. I. Stockman, “Surface plasmon amplification by stimulated emission of radiation: quantum generation of coherent surface plasmons in nanosystems,” Phys. Rev. Lett.90(2), 027402 (2003). [CrossRef] [PubMed]
  7. M. I. Stockman, “Nanoscience: dark-hot resonances,” Nature467(7315), 541–542 (2010). [CrossRef] [PubMed]
  8. R. Singh, C. Rockstuhl, F. Lederer, and W. Zhang, “Coupling between a dark and a bright eigenmode in a terahertz metamaterial,” Phys. Rev. B79(8), 085111 (2009). [CrossRef]
  9. S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-induced transparency in metamaterials,” Phys. Rev. Lett.101(4), 047401 (2008). [CrossRef] [PubMed]
  10. N. Papasimakis, V. A. Fedotov, N. I. Zheludev, and S. L. Prosvirnin, “Metamaterial analog of electromagnetically induced transparency,” Phys. Rev. Lett.101(25), 253903 (2008). [CrossRef] [PubMed]
  11. N. Liu, L. Langguth, T. Weiss, J. Kastel, M. Fleischhauer, T. Pfau, and H. Giessen, “Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit,” Nat. Mater.8(9), 758–762 (2009). [CrossRef] [PubMed]
  12. Y. Sun, H. Jiang, Y. Yang, Y. Zhang, H. Chen, and S. Zhu, “Electromagnetically induced transparency in metamaterials: Influence of intrinsic loss and dynamic evolution,” Phys. Rev. B83(19), 195140 (2011). [CrossRef]
  13. V. Yannopapas, E. Paspalakis, and N. V. Vitanov, “Electromagnetically induced transparency and slow light in an array of metallic nanoparticles,” Phys. Rev. B80(3), 035104 (2009). [CrossRef]
  14. P. Tassin, L. Zhang, T. Koschny, E. N. Economou, and C. M. Soukoulis, “Low-loss metamaterials based on classical electromagnetically induced transparency,” Phys. Rev. Lett.102(5), 053901 (2009). [CrossRef] [PubMed]
  15. P. Tassin, L. Zhang, T. Koschny, E. N. Economou, and C. M. Soukoulis, “Planar designs for electromagnetically induced transparency in metamaterials,” Opt. Express17(7), 5595–5605 (2009). [CrossRef] [PubMed]
  16. S.-Y. Chiam, R. Singh, C. Rockstuhl, F. Lederer, W. Zhang, and A. A. Bettiol, “Analogue of electromagnetically induced transparency in a terahertz metamaterial,” Phys. Rev. B80(15), 153103 (2009). [CrossRef]
  17. R. D. Kekatpure, E. S. Barnard, W. Cai, and M. L. Brongersma, “Phase-coupled plasmon-induced transparency,” Phys. Rev. Lett.104(24), 243902 (2010). [CrossRef] [PubMed]
  18. S. Linden, J. Kuhl, and H. Giessen, “Controlling the interaction between light and gold nanoparticles: selective suppression of extinction,” Phys. Rev. Lett.86(20), 4688–4691 (2001). [CrossRef] [PubMed]
  19. A. Christ, T. Zentgraf, J. Kuhl, S. G. Tikhodeev, N. A. Gippius, and H. Giessen, “Optical properties of planar metallic photonic crystal structures: experiment and theory,” Phys. Rev. B70(12), 125113 (2004). [CrossRef]
  20. T. Zentgraf, S. Zhang, R. F. Oulton, and X. Zhang, “Ultranarrow coupling-induced transparency bands in hybrid plasmonic systems,” Phys. Rev. B80(19), 195415 (2009). [CrossRef]
  21. A. Christ, O. J. F. Martin, Y. Ekinci, N. A. Gippius, and S. G. Tikhodeev, “Symmetry breaking in a plasmonic metamaterial at optical wavelength,” Nano Lett.8(8), 2171–2175 (2008). [CrossRef] [PubMed]
  22. F. Hao, Y. Sonnefraud, P. V. Dorpe, S. A. Maier, N. J. Halas, and P. Nordlander, “Symmetry breaking in plasmonic nanocavities: subradiant LSPR sensing and a tunable Fano resonance,” Nano Lett.8(11), 3983–3988 (2008). [CrossRef] [PubMed]
  23. C.-Y. Chen, I.-W. Un, N.-H. Tai, and T.-J. Yen, “Asymmetric coupling between subradiant and superradiant plasmonic resonances and its enhanced sensing performance,” Opt. Express17(17), 15372–15380 (2009). [CrossRef] [PubMed]
  24. L. V. Brown, H. Sobhani, J. B. Lassiter, P. Nordlander, and N. J. Halas, “Heterodimers: plasmonic properties of mismatched nanoparticle pairs,” ACS Nano4(2), 819–832 (2010). [CrossRef] [PubMed]
  25. V. A. Fedotov, M. Rose, S. L. Prosvirnin, N. Papasimakis, and N. I. Zheludev, “Sharp trapped-mode resonances in planar metamaterials with a broken structural symmetry,” Phys. Rev. Lett.99(14), 147401 (2007). [CrossRef] [PubMed]
  26. Z.-G. Dong, H. Liu, T. Li, Z.-H. Zhu, S.-M. Wang, J.-X. Cao, S.-N. Zhu, and X. Zhang, “Optical loss compensation in a bulk left-handed metamaterial by the gain in quantum dots,” Appl. Phys. Lett.96(4), 044104 (2010). [CrossRef]
  27. F. M. Wang, H. Liu, T. Li, Z. G. Dong, S. N. Zhu, and X. Zhang, “Metamaterial of rod pairs standing on gold plate and its negative refraction property in the far-infrared frequency regime,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.75(1), 016604 (2007). [CrossRef] [PubMed]
  28. Z.-G. Dong, H. Liu, M.-X. Xu, T. Li, S.-M. Wang, J.-X. Cao, S.-N. Zhu, and X. Zhang, “Role of asymmetric environment on the dark mode excitation in metamaterial analogue of electromagnetically-induced transparency,” Opt. Express18(21), 22412–22417 (2010). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

Multimedia

Multimedia FilesRecommended Software
» Media 1: AVI (2161 KB)      QuickTime

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited