OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 7 — Mar. 26, 2012
  • pp: 7212–7220

On the origin of near-IR luminescence in Bi-doped materials (II). Subvalent monocation Bi+ and cluster Bi53+ luminescence in AlCl3/ZnCl2/BiCl3 chloride glass

Alexey N. Romanov, Zukhra T. Fattakhova, Alexander A. Veber, Olga V. Usovich, Elena V. Haula, Vladimir N. Korchak, Vladimir B. Tsvetkov, Lev A. Trusov, Pavel E. Kazin, and Vladimir B. Sulimov  »View Author Affiliations

Optics Express, Vol. 20, Issue 7, pp. 7212-7220 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (1067 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Broadband NIR photoluminescence (from 1000 to 2500 nm) was observed from partially reduced AlCl3/ZnCl2/BiCl3 glass, containing subvalent bismuth species. The luminescence consists of three bands, assigned to Bi+, Bi24+, and Bi53+ ions. The physical and optical characteristics of these centers and possible contribution to NIR luminescence from bismuth-doped oxide glasses are discussed.

© 2012 OSA

OCIS Codes
(140.4480) Lasers and laser optics : Optical amplifiers
(160.2540) Materials : Fluorescent and luminescent materials
(160.2750) Materials : Glass and other amorphous materials

ToC Category:

Original Manuscript: February 2, 2012
Revised Manuscript: March 1, 2012
Manuscript Accepted: March 5, 2012
Published: March 14, 2012

Alexey N. Romanov, Zukhra T. Fattakhova, Alexander A. Veber, Olga V. Usovich, Elena V. Haula, Vladimir N. Korchak, Vladimir B. Tsvetkov, Lev A. Trusov, Pavel E. Kazin, and Vladimir B. Sulimov, "On the origin of near-IR luminescence in Bi-doped materials (II). Subvalent monocation Bi+ and cluster Bi53+ luminescence in AlCl3/ZnCl2/BiCl3 chloride glass," Opt. Express 20, 7212-7220 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. Y. Fujimoto, M. Nakatsuka, “Optical amplification in bismuth-doped silica glass,” Appl. Phys. Lett. 82(19), 3325–3326 (2003). [CrossRef]
  2. E. M. Dianov, “Bi-doped glass optical fibers: is it a new breakthrough in laser materials?” J. Non-Cryst. Solids 355(37-42), 1861–1864 (2009). [CrossRef]
  3. X. G. Meng, J. R. Qiu, M. Y. Peng, D. P. Chen, Q. Z. Zhao, X. W. Jiang, C. S. Zhu, “Near infrared broadband emission of bismuth-doped aluminophosphate glass,” Opt. Express 13(5), 1628–1634 (2005). [CrossRef] [PubMed]
  4. X. G. Meng, J. R. Qiu, M. Y. Peng, D. P. Chen, Q. Z. Zhao, X. W. Jiang, C. S. Zhu, “Infrared broadband emission of bismuth-doped barium-aluminum-borate glasses,” Opt. Express 13(5), 1635–1642 (2005). [CrossRef] [PubMed]
  5. M. A. Hughes, T. Akada, T. Suzuki, Y. Ohishi, D. W. Hewak, “Ultrabroad emission from a bismuth doped chalcogenide glass,” Opt. Express 17(22), 19345–19355 (2009). [CrossRef] [PubMed]
  6. A. N. Romanov, E. V. Haula, Z. T. Fattakhova, A. A. Veber, V. B. Tsvetkov, D. M. Zhigunov, V. N. Korchak, V. B. Sulimov, “Near-IR luminescence from subvalent bismuth species in fluoride glass,” Opt. Mater. 34(1), 155–158 (2011). [CrossRef]
  7. A. G. Okhrimchuk, L. N. Butvina, E. M. Dianov, N. V. Lichkova, V. N. Zagorodnev, K. N. Boldyrev, “Near-infrared luminescence of RbPb2Cl5:Bi crystals,” Opt. Lett. 33(19), 2182–2184 (2008). [CrossRef] [PubMed]
  8. L. Su, J. Yu, P. Zhou, H. Li, L. Zheng, Y. Yang, F. Wu, H. Xia, J. Xu, “Broadband near-infrared luminescence in γ-irradiated Bi-doped α-BaB2O4 single crystals,” Opt. Lett. 34(16), 2504–2506 (2009). [CrossRef] [PubMed]
  9. J. Ruan, L. Su, J. Qiu, D. Chen, J. Xu, “Bi-doped BaF2 crystal for broadband near-infrared light source,” Opt. Express 17(7), 5163–5169 (2009). [CrossRef] [PubMed]
  10. M. Peng, B. Sprenger, M. A. Schmidt, H. G. L. Schwefel, L. Wondraczek, “Broadband NIR photoluminescence from Bi-doped Ba2P2O7 crystals: insights into the nature of NIR-emitting Bismuth centers,” Opt. Express 18(12), 12852–12863 (2010). [CrossRef] [PubMed]
  11. L. Su, H. Zhao, H. Li, L. Zheng, G. Ren, J. Xu, W. Ryba-Romanowski, R. Lisiecki, P. Solarz, “Near-infrared ultrabroadband luminescence spectra properties of subvalent bismuth in CsI halide crystals,” Opt. Lett. 36(23), 4551–4553 (2011). [CrossRef] [PubMed]
  12. H.-T. Sun, A. Hosokawa, Y. Miwa, F. Shimaoka, M. Fujii, M. Mizuhata, S. Hayashi, S. Deki, “Strong ultra-broadband near-infrared photoluminescence from bismuth-embedded zeolites and their derivatives,” Adv. Mater. (Deerfield Beach Fla.) 21(36), 3694–3698 (2009). [CrossRef]
  13. H.-T. Sun, Y. Sakka, Y. Miwa, N. Shirahata, M. Fujii, H. Gao, “Spectroscopic characterization of bismuth embedded Y zeolites,” Appl. Phys. Lett. 97(13), 131908 (2010). [CrossRef]
  14. H.-T. Sun, M. Fujii, Y. Sakka, Z. Bai, N. Shirahata, L. Zhang, Y. Miwa, H. Gao, “Near-infrared photoluminescence and Raman characterization of bismuth-embedded sodalite nanocrystals,” Opt. Lett. 35(11), 1743–1745 (2010). [CrossRef] [PubMed]
  15. W. A. Runciman, “Absorption and emission spectra of bismuth-activated phosphors,” Proc. Phys. Soc. A 68(7), 647–649 (1955). [CrossRef]
  16. A. N. Romanov, Z. T. Fattakhova, D. M. Zhigunov, V. N. Korchak, V. B. Sulimov, “On the origin of near-IR luminescence in Bi-doped materials (I). Generation of low-valence bismuth species by Bi3+ and Bi0 synproportionation,” Opt. Mater. 33(4), 631–634 (2011). [CrossRef]
  17. H.-T. Sun, Y. Sakka, M. Fujii, N. Shirahata, H. Gao, “Ultrabroad near-infrared photoluminescence from ionic liquids containing subvalent bismuth,” Opt. Lett. 36(2), 100–102 (2011). [CrossRef] [PubMed]
  18. M. A. Hamstra, H. F. Folkerts, G. Blasse, “Materials chemistry communications. Red bismuth emission in alkaline-earth-metal sulfates,” J. Mater. Chem. 4(8), 1349–1350 (1994). [CrossRef]
  19. N. J. Bjerrum, C. R. Boston, G. P. Smith, “Lower oxidation states of bismuth. Bi+ and Bi53+ in molten salt solutions,” Inorg. Chem. 6(6), 1162–1172 (1967). [CrossRef]
  20. R. M. Friedman, J. D. Corbett, “Synthesis and structural characterization of bismuth(1+)nonabismuth(5+)hexachlorohafnate(IV), BiBi9(HfCl6)3,” Inorg. Chem. 12(5), 1134–1139 (1973). [CrossRef]
  21. S. Ulvenlund, L. Bengtsson-Kloo, K. Ståhl, “Formation of subvalent bismuth cations in molten gallium trichloride and benzene solution,” J. Chem. Soc., Faraday Trans. 91, 4223–4234 (1995). [CrossRef]
  22. H. Kalpen, W. Hönle, M. Somer, U. Schwarz, K. Peters, H. G. von Schnering, R. Blachnik, “Bismut(II)-chalkogenometallate(III) Bi2M4X8, Verbindungen mit Bi24+-Hanteln (M=Al, Ga; X=S,Se),” Z. Anorg. Allg. Chem. 624(7), 1137–1147 (1998). [CrossRef]
  23. E. V. Dikarev, B. Li, “Rational syntheses, structure, and properties of the first bismuth(II) carboxylate,” Inorg. Chem. 43(11), 3461–3466 (2004). [CrossRef] [PubMed]
  24. B. Wahl, M. Ruck, “Ag3Bi14Br21: ein Subbromid mit Bi24+-Hanteln und Bi95+-Polyedern – Synthese, Kristallstruktur und chemische Bindung,” Z. Anorg. Allg. Chem. 634(15), 2873–2879 (2008). [CrossRef]
  25. J. D. Corbett, F. C. Albers, R. A. Sallach, “An electromotive force studies of solutions of bismuth in bismuth (III) chloride at 240°C,” Inorg. Chim. Acta 2, 22–26 (1968). [CrossRef]
  26. B. Krebs, M. Mummert, C. J. Brendel, “Characterization of the Bi53+ cluster cation: preparation of single crystals, crystal and molecular structure of Bi5(AlCl4)3,” J. Less Common Met. 116(1), 159–168 (1986). [CrossRef]
  27. M. Ruck, “Bi34Ir3Br37: Ein pseudosymmetrisches Subbromid aus Bi5+ und Bi62+ Polykationen sowie [IrBi6Br12]– und [IrBi6Br13]2– - Clusteranionen,” Z. Anorg. Allg. Chem. 624(3), 521–528 (1998). [CrossRef]
  28. M. Ruck, S. Hampel, “Stabilization of homonuclear Bi5+ and Bi62+ polycations by cluster anions in the crystal structures of Bi12−xIrCl13−x, Bi12−xRhCl13−x and Bi12−xRhBr13−x,” Polyhedron 21(5-6), 651–656 (2002). [CrossRef]
  29. N. J. Bjerrum, G. P. Smith, “Lower oxidation states of bismuth. Bi82+ formed in aluminum chloride-sodium chloride melts,” Inorg. Chem. 6(11), 1968–1972 (1967). [CrossRef]
  30. J. Beck, C. J. Brendel, L. A. Bengtsson-Kloo, B. Krebs, M. Mummert, A. Stankowski, S. Ulvenlund, “The crystal structure of Bi8(AlCl4)2 and the crystal structure, conductivity and theoretical band structure of Bi6Cl7 and related subvalent bismuth halides,” Chem. Ber. 129(10), 1219–1226 (1996). [CrossRef]
  31. A. Hershaft, J. D. Corbett, “The crystal structure of bismuth subchloride. Identification of the ion Bi95+,” Inorg. Chem. 2(5), 979–985 (1963). [CrossRef]
  32. H.-T. Sun, Y. Sakka, H. Gao, Y. Miwa, M. Fujii, N. Shirahata, Z. Bai, J.-G. Li, “Ultrabroad near-infrared photoluminescence from Bi5(AlCl4)3 crystal,” J. Mater. Chem. 21(12), 4060–4063 (2011). [CrossRef]
  33. R. Cao, M. Peng, L. Wondraczek, J. Qiu, “Superbroadband near-to-mid-infrared luminescence from Bi53+ in Bi5(AlCl4)3,” Opt. Express 20(3), 2562–2571 (2012). [CrossRef] [PubMed]
  34. S. Pedersen, “Viscosity, structure and glass formation in the AlCl3-ZnCl2 system,” Ph.D thesis (Institutt for Kjemi, Norges Tekniskurn-Naturvitenskaplige Universitet, 2001).
  35. C. R. Boston, G. P. Smith, “Spectra of dilute solutions of bismuth metal in molten bismuth trihalides. I. Evidence for two solute species in the system bismuth-bismuth trichloride,” J. Phys. Chem. 66(6), 1178–1181 (1962). [CrossRef]
  36. C. R. Boston, G. P. Smith, L. C. Howick, “Spectra of dilute solutions of bismuth metal in molten bismuth trihalides. II. Formulation of solute equilibrium in bismuth trichloride,” J. Phys. Chem. 67(9), 1849–1852 (1963). [CrossRef]
  37. L. E. Topol, S. J. Yosim, R. A. Osteryoung, “E.M.F. measurements in molten bismuth-bismuth trichloride solutions,” J. Phys. Chem. 65(9), 1511–1516 (1961). [CrossRef]
  38. H. L. Davis, N. J. Bjerrum, G. P. Smith, “Ligand field theory of p2,4 configurations and its application to the spectrum of Bi+ in molten salt media,” Inorg. Chem. 6(6), 1172–1178 (1967). [CrossRef]
  39. B. I. Denker, B. I. Galagan, V. V. Osiko, I. L. Shulman, S. E. Sverchkov, E. M. Dianov, “Factors affecting the formation of near infrared-emitting optical centers in Bi-doped glasses,” Appl. Phys. B 98(2-3), 455–458 (2010). [CrossRef]
  40. N. A. Alexeev, V. P. Gapontsev, M. E. Zhabotinskii, V. B. Kravchenko, and Yu. P. Rudnitskii, Laser Phosphate Glasses (Nauka, Moscow, 1980), Chap. 3.
  41. A. N. Romanov, O. A. Kondakova, D. N. Vtyurina, A. V. Sulimov, V. B. Sulimov, “Calculation of excited states properties for Bi53+ polycation by the spin-orbit configuration interaction method,” Num. Meth. Prog. 12, 443–449 (2011).
  42. H. Kunkely, A. Vogler, “On the origin of the photoluminescence of mercurous chloride,” Chem. Phys. Lett. 240(1-3), 31–34 (1995). [CrossRef]
  43. X. Guo, H. Li, L. Su, P. Yu, H. Zhao, Q. Wang, J. Liu, J. Xu, “Study on multiple near-infrared luminescent centers and effects of aluminum ions in Bi2O3–GeO2 glass system,” Opt. Mater. 34(4), 675–678 (2012). [CrossRef]
  44. S. V. Firstov, V. F. Khopin, I. A. Bufetov, E. G. Firstova, A. N. Guryanov, E. M. Dianov, “Combined excitation-emission spectroscopy of bismuth active centers in optical fibers,” Opt. Express 19(20), 19551–19561 (2011). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited