OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 7 — Mar. 26, 2012
  • pp: 7237–7242

Short temporal coherence digital holography with a femtosecond frequency comb laser for multi-level optical sectioning

Klaus Körner, Giancarlo Pedrini, Igor Alexeenko, Tilo Steinmetz, R. Holzwarth, and W. Osten  »View Author Affiliations

Optics Express, Vol. 20, Issue 7, pp. 7237-7242 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (1067 KB) | SpotlightSpotlight on Optics

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



In this paper, we demonstrate how short temporal coherence digital holography with a femtosecond frequency comb laser source may be used for multi-level optical sectioning. The object shape is obtained by digitally reconstructing and processing a sequence of holograms recorded during stepwise shifting of a mirror in the reference arm. Experimental results are presented.

© 2012 OSA

OCIS Codes
(090.0090) Holography : Holography
(120.3940) Instrumentation, measurement, and metrology : Metrology
(090.1995) Holography : Digital holography
(140.3538) Lasers and laser optics : Lasers, pulsed

ToC Category:

Original Manuscript: January 11, 2012
Revised Manuscript: February 23, 2012
Manuscript Accepted: March 12, 2012
Published: March 14, 2012

Virtual Issues
Vol. 7, Iss. 5 Virtual Journal for Biomedical Optics
May 21, 2012 Spotlight on Optics

Klaus Körner, Giancarlo Pedrini, Igor Alexeenko, Tilo Steinmetz, R. Holzwarth, and W. Osten, "Short temporal coherence digital holography with a femtosecond frequency comb laser for multi-level optical sectioning," Opt. Express 20, 7237-7242 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. W. Goodman, R. W. Lawrence, “Digital image formation from electronically detected holograms,” Appl. Phys. Lett. 11(3), 77–79 (1967). [CrossRef]
  2. W. S. Haddad, D. Cullen, J. C. Solem, J. W. Longworth, A. McPherson, K. Boyer, C. K. Rhodes, “Fourier-transform holographic microscope,” Appl. Opt. 31(24), 4973–4978 (1992). [CrossRef] [PubMed]
  3. U. Schnars, “Direct phase determination in hologram interferometry with use of digitally recorded holograms,” J. Opt. Soc. Am. A 11(7), 2011–2015 (1994). [CrossRef]
  4. I. Yamaguchi, T. Zhang, “Phase-shifting digital holography,” Opt. Lett. 22(16), 1268–1270 (1997). [CrossRef] [PubMed]
  5. C. Wagner, S. Seebacher, W. Osten, W. Jüptner, “Digital recording and numerical reconstruction of lensless Fourier holograms in optical metrology,” Appl. Opt. 38(22), 4812–4820 (1999). [CrossRef] [PubMed]
  6. C. Wagner, W. Osten, S. Seebacher, “Direct shape measurement by digital wavefront reconstruction and multiwavelength contouring,” Opt. Eng. 39(1), 79–85 (2000). [CrossRef]
  7. L. Martínez-León, G. Pedrini, W. Osten, “Applications of short-coherence digital holography in microscopy,” Appl. Opt. 44(19), 3977–3984 (2005). [CrossRef] [PubMed]
  8. Y. C. Lin, C.-J. Cheng, T. C. Poon, “Optical sectioning with a low-coherence phase-shifting digital holographic microscope,” Appl. Opt. 50(7), B25–B30 (2011). [CrossRef] [PubMed]
  9. C. Yuan, H. Zhai, X. Wang, L. Wu, “Lensless digital holography with short coherence light source for three-dimensional surface contouring of reflecting micro objects,” Opt. Commun. 270(2), 176–179 (2007). [CrossRef]
  10. T. Udem, R. Holzwarth, T. W. Hänsch, “Optical frequency metrology,” Nature 416(6877), 233–237 (2002). [CrossRef] [PubMed]
  11. P. Del’Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, T. J. Kippenberg, “Optical frequency comb generation from a monolithic microresonator,” Nature 450(7173), 1214–1217 (2007). [CrossRef] [PubMed]
  12. T. J. Kippenberg, R. Holzwarth, S. A. Diddams, “Microresonator-based optical frequency combs,” Science 332(6029), 555–559 (2011). [CrossRef] [PubMed]
  13. S. Hyun, Y.-J. Kim, Y. Kim, S.-W. Kim, “Absolute distance measurement using the frequency comb of a femtosecond laser,” CIRP Annals Manufacturing Technology 59(1), 555–558 (2010). [CrossRef]
  14. S. Choi, M. Yamamoto, D. Moteki, T. Shioda, Y. Tanaka, T. Kurokawa, “Frequency-comb-based interferometer for profilometry and tomography,” Opt. Lett. 31(13), 1976–1978 (2006). [CrossRef] [PubMed]
  15. T. Steinmetz, T. Wilken, C. Araujo-Hauck, R. Holzwarth, T. W. Hänsch, L. Pasquini, A. Manescau, S. D’Odorico, M. T. Murphy, T. Kentischer, W. Schmidt, T. Udem, “Laser frequency combs for astronomical observations,” Science 321(5894), 1335–1337 (2008). [CrossRef] [PubMed]
  16. T. Wilken, C. Lovis, A. Manescau, T. Steinmetz, L. Pasquini, G. Lo Curto, T. W. Hänsch, R. Holzwarth, T. Udem, “High-precision calibration of spectrographs,” Mon. Not. R. Astron. Soc. 405(1), L16–L20 (2010). [CrossRef]
  17. D. Wei, S. Takahashi, K. Takamasu, H. Matsumoto, “Analysis of the temporal coherence function of a femtosecond optical frequency comb,” Opt. Express 17(9), 7011–7018 (2009). [CrossRef] [PubMed]
  18. J. Schwider, “Multiple beam Fizeau interferometer with filtered frequency comb illumination,” Opt. Commun. 282(16), 3308–3324 (2009). [CrossRef]
  19. K. Körner, G. Pedrini, C. Pruss, and W. Osten, German patent application 10 2011 016 660 (to be published).
  20. M. Born and E. Wolf, Principles of Optics, 7nd ed. (Cambridge University Press, 2011), Chap. 10.
  21. J. W. Goodman, Introduction to Fourier Optics, 2nd ed. (McGraw-Hill, 1988), Chap. 2.
  22. A. Ruehl, A. Marcinkevicius, M. E. Fermann, I. Hartl, “80 W, 120 fs Yb-fiber frequency comb,” Opt. Lett. 35(18), 3015–3017 (2010). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited