OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 7 — Mar. 26, 2012
  • pp: 7243–7254

Low-loss polysilicon waveguides fabricated in an emulated high-volume electronics process

Jason S. Orcutt, Sanh D. Tang, Steve Kramer, Karan Mehta, Hanqing Li, Vladimir Stojanović, and Rajeev J. Ram  »View Author Affiliations

Optics Express, Vol. 20, Issue 7, pp. 7243-7254 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (1510 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We measure end-of-line polysilicon waveguide propagation losses of ~6-15 dB/cm across the telecommunication O-, E-, S-, C- and L-bands in a process representative of high-volume product integration. The lowest loss of 6.2 dB/cm is measured at 1550 nm in a polysilicon waveguide with a 120 nm x 350 nm core geometry. The reported waveguide characteristics are measured after the thermal cycling of the full CMOS electronics process that results in a 32% increase in the extracted material loss relative to the as-crystallized waveguide samples. The measured loss spectra are fit to an absorption model using defect state parameters to identify the dominant loss mechanism in the end-of-line and as-crystallized polysilicon waveguides.

© 2012 OSA

OCIS Codes
(220.4000) Optical design and fabrication : Microstructure fabrication
(230.7370) Optical devices : Waveguides
(250.5300) Optoelectronics : Photonic integrated circuits

ToC Category:
Optical Devices

Original Manuscript: January 30, 2012
Revised Manuscript: March 7, 2012
Manuscript Accepted: March 12, 2012
Published: March 14, 2012

Jason S. Orcutt, Sanh D. Tang, Steve Kramer, Karan Mehta, Hanqing Li, Vladimir Stojanović, and Rajeev J. Ram, "Low-loss polysilicon waveguides fabricated in an emulated high-volume electronics process," Opt. Express 20, 7243-7254 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M. J. Kobrinski, B. A. Block, J.-F. Zheng, B. C. Barnett, E. Mohammed, M. Reshotko, F. Robertson, S. List, I. Young, K. Cadien, “On-chip optical interconnects,” Intel Technol. J. 8, 129–141 (2004).
  2. D. A. B. Miller, “Device requirements for optical interconnects to silicon chips,” Proc. IEEE 97(7), 1166–1185 (2009). [CrossRef]
  3. S. Beamer, C. Sun, Y.-J. Kwon, A. Joshi, C. Batten, V. Stojanović, and K. Asanović, “Re-architecting DRAM memory systems with monolithically integrated silicon photonics,” in International Symposium on Computer Architecture (Association for Computing Machinery, New York 2010), 129–140.
  4. P. Dumon, W. Bogaerts, V. Wiaux, J. Wouters, S. Beckx, J. Van Campenhout, D. Taillaert, B. Luyssaert, P. Bienstman, D. Van Thourhout, R. Baets, “Low-loss SOI photonic wires and ring resonators fabricated with deep UV lithography,” IEEE Photon. Technol. Lett. 16(5), 1328–1330 (2004). [CrossRef]
  5. C. Gunn, “CMOS photonics for high-speed interconnects,” IEEE Micro 26(2), 58–66 (2006). [CrossRef]
  6. X. Zheng, J. Lexau, Y. Luo, H. Thacker, T. Pinguet, A. Mekis, G. Li, J. Shi, P. Amberg, N. Pinckney, K. Raj, R. Ho, J. E. Cunningham, A. V. Krishnamoorthy, “Ultra-low-energy all-CMOS modulator integrated with driver,” Opt. Express 18(3), 3059–3070 (2010), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-3-3059 . [CrossRef] [PubMed]
  7. Y. Vlasov, W. M. J. Green, F. Xia, “High-throughput silicon nanophotonic wavelength-insensitive switch for on-chip optical networks,” Nat. Photonics 2(4), 242–246 (2008). [CrossRef]
  8. T. Ohsawa, K. Fujita, K. Hatsuda, T. Higashi, M. Morikado, Y. Minami, T. Shino, H. Nakajima, K. Inoh, T. Hamamoto, and S. Watanabe, “An 18.5ns 128MB SOI DRAM with floating body cell,” in International Solid-State Circuits Conference (Institute of Electrical and Electronics Engineers, New York, 2005), 459–609.
  9. J. A. Kash, “Leveraging optical interconnects in future supercomputers and servers,” in Proc. IEEE Symposium on High-Performance Interconnects (Institute of Electrical and Electronics Engineers, New York 2008), 190–194.
  10. A. M. Agarwal, L. Liao, J. S. Foresi, M. R. Black, X. Duan, L. C. Kimerling, “Low-loss polycrystalline silicon waveguides for silicon photonics,” J. Appl. Phys. 80(11), 6120–6123 (1996). [CrossRef]
  11. K. Preston, S. Manipatruni, A. Gondarenko, C. B. Poitras, M. Lipson, “Deposited silicon high-speed integrated electro-optic modulator,” Opt. Express 17(7), 5118–5124 (2009), http://www.opticsinfobase.org/abstract.cfm?URI=oe-17-7-5118 . [CrossRef] [PubMed]
  12. I. A. Young, E. Mohammed, J. T. S. Liao, A. M. Kern, S. Palermo, B. A. Block, M. R. Reshotko, P. L. D. Chang, “Optical I/O technology for tera-scale computing,” IEEE J. Solid-state Circuits 45(1), 235–248 (2010). [CrossRef]
  13. S. Kalluri, M. Ziari, A. Chen, V. Chuyanov, W. H. Steier, D. Chen, B. Jalali, H. Fetterman, L. R. Dalton, “Monolithic integration of waveguide polymer electrooptic modulators on VLSI circuitry,” IEEE Photon. Technol. Lett. 8(5), 644–646 (1996). [CrossRef]
  14. B. A. Block, T. R. Younkin, P. S. Davids, M. R. Reshotko, P. Chang, B. M. Polishak, S. Huang, J. Luo, A. K. Y. Jen, “Electro-optic polymer cladding ring resonator modulators,” Opt. Express 16(22), 18326–18333 (2008), http://www.opticsinfobase.org/abstract.cfm?URI=oe-16-22-18326 . [CrossRef] [PubMed]
  15. G. Masini, L. Colace, G. Assanto, “2.5 Gbit/s polycrystalline germanium-on-silicon photodetector operating from 1.3 to 1.55 µm,” Appl. Phys. Lett. 82(15), 2524–2526 (2003). [CrossRef]
  16. S. Assefa, F. Xia, Y. A. Vlasov, “Reinventing germanium avalanche photodetector for nanophotonic on-chip optical interconnects,” Nature 464(7285), 80–84 (2010). [CrossRef] [PubMed]
  17. J. S. Orcutt, A. Khilo, C. W. Holzwarth, M. A. Popović, H. Li, J. Sun, T. Bonifield, R. Hollingsworth, F. X. Kärtner, H. I. Smith, V. Stojanović, R. J. Ram, “Nanophotonic integration in state-of-the-art CMOS foundries,” Opt. Express 19(3), 2335–2346 (2011), http://www.opticsinfobase.org/abstract.cfm?URI=oe-19-3-2335 . [CrossRef] [PubMed]
  18. H.-C. Ji, K. H. Ha, I. S. Joe, S. G. Kim, K. W. Na, D. J. Shin, S. D. Suh, Y. D. Park, and C. H. Chung, “Optical interface platform for DRAM integration,” in Optical Fiber Communication Conference, OSA Technical Digest (CD) (Optical Society of America, 2011), paper OThV4. http://www.opticsinfobase.org/abstract.cfm?URI=OFC-2011-OThV4
  19. J. S. Orcutt, S. D. Tang, S. Kramer, H. Li, V. Stojanović, and R. J. Ram, “Low-loss polysilicon waveguides suitable for integration within a high-volume electronics process,” in Conference on Lasers and Electro-Optics, Technical Digest (CD) (Optical Society of America, 2011), paper CThHH2. http://www.opticsinfobase.org/abstract.cfm?URI=CLEO : S and I-2011-CThHH2
  20. J. S. Foresi, M. R. Black, A. M. Agarwal, L. C. Kimerling, “Losses in polycrystalline silicon waveguides,” Appl. Phys. Lett. 68(15), 2052–2054 (1996). [CrossRef]
  21. Q. Fang, J. F. Song, S. H. Tao, M. B. Yu, G. Q. Lo, and D. L. Kwong, “Low loss (~6.45 dB/cm) sub-micron polycrystalline silicon waveguide integrated with efficient SiON waveguide coupler,” Opt. Express 16, 6425–6432. http://www.opticsinfobase.org/abstract.cfm?URI=oe-16-9-6425
  22. L. Liao, D. R. Lim, A. M. Agarwal, X. Duan, K. K. Lee, L. C. Kimerling, “Optical transmission losses in polycrystalline silicon strip waveguides: effects of waveguide dimensions, thermal treatment, hydrogen passivation, and wavelength,” J. Electron. Mater. 29(12), 1380–1386 (2000). [CrossRef]
  23. S. Zhu, Q. Fang, M. B. Yu, G. Q. Lo, D. L. Kwong, “Propagation losses in undoped and n-doped polycrystalline silicon wire waveguides,” Opt. Express 17(23), 20891–20899 (2009), http://www.opticsinfobase.org/abstract.cfm?URI=oe-17-23-20891 . [CrossRef] [PubMed]
  24. S. Zhu, G. Q. Lo, J. D. Ye, D. L. Kwong, “Influence of RTA and LTA on the optical propagation loss in polycrystalline silicon wire waveguides,” IEEE Photon. Technol. Lett. 22(7), 480–482 (2010). [CrossRef]
  25. C. W. Holzwarth, J. S. Orcutt, H. Li, M. A. Popović, V. Stojanović, J. L. Hoyt, R. J. Ram, and H. I. Smith, “Localized substrate removal technique enabling strong-confinement microphotonics in bulk Si CMOS processes,” in Conference on Lasers and Electro-Optics, Technical Digest (CD) (Optical Society of America, 2008), paper CThKK5. http://www.opticsinfobase.org/abstract.cfm?URI=CLEO-2008-CThKK5
  26. T. Barwicz, H. A. Haus, “Three-dimensional analysis of scattering losses due to sidewall roughness in microphotonic waveguides,” IEEE J. Lightwave Technol. 23(9), 2719–2732 (2005). [CrossRef]
  27. S. Sridaran, S. A. Bhave, “Nanophotonic devices on thin buried oxide Silicon-On-Insulator substrates,” Opt. Express 18(4), 3850–3857 (2010), http://www.opticsinfobase.org/abstract.cfm?URI=oe-18-4-3850 . [CrossRef] [PubMed]
  28. J. E. Cunningham, I. Shubin, X. Zheng, T. Pinguet, A. Mekis, Y. Luo, H. Thacker, G. Li, J. Yao, K. Raj, A. V. Krishnamoorthy, “Highly-efficient thermally-tuned resonant optical filters,” Opt. Express 18(18), 19055–19063 (2010), http://www.opticsinfobase.org/abstract.cfm?URI=oe-18-18-19055 . [CrossRef] [PubMed]
  29. http://www.research.ibm.com/DAMOCLES/html_files/phys.html
  30. W. B. Jackson, N. M. Johnson, D. K. Biegelsen, “Density of gap states of silicon grain boundaries determined by optical absorption,” Appl. Phys. Lett. 43(2), 195–197 (1983). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited