OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 7 — Mar. 26, 2012
  • pp: 7255–7262

Coherence properties of a broadband femtosecond mid-IR optical parametric oscillator operating at degeneracy

Alireza Marandi, Nick C. Leindecker, Vladimir Pervak, Robert L. Byer, and Konstantin L. Vodopyanov  »View Author Affiliations

Optics Express, Vol. 20, Issue 7, pp. 7255-7262 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (1123 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We study coherence properties of a χ(2) optical parametric oscillator (OPO), which produces 2/3-octave-wide spectrum centered at the subharmonic (3120 nm) of the femtosecond pump laser. Our method consists of interfering the outputs of two identical, but independent OPOs pumped by the same laser. We demonstrate that the two OPOs show stable spatial and temporal interference and are mutually locked in frequency and in phase. By observing a collective heterodyne beat signal between the two OPOs we show that one can deterministically choose, by cavity length adjustment, between the two frequency states corresponding to the two sets of modes shifted with respect to each other by half of the laser pulse repetition rate. Moreover, we observe that the existence of two opposite phase states, a known common feature of a parametrically driven n = 2 subharmonic oscillator, reveals itself in our experiment as a common phase, 0 or π, being established through the whole set of some 300 thousand longitudinal modes.

© 2012 OSA

OCIS Codes
(190.4410) Nonlinear optics : Nonlinear optics, parametric processes
(190.4975) Nonlinear optics : Parametric processes

ToC Category:
Nonlinear Optics

Original Manuscript: February 2, 2012
Revised Manuscript: March 5, 2012
Manuscript Accepted: March 5, 2012
Published: March 14, 2012

Alireza Marandi, Nick C. Leindecker, Vladimir Pervak, Robert L. Byer, and Konstantin L. Vodopyanov, "Coherence properties of a broadband femtosecond mid-IR optical parametric oscillator operating at degeneracy," Opt. Express 20, 7255-7262 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. T. Popmintchev, M.-C. Chen, P. Arpin, M. M. Murnane, H. C. Kapteyn, “The attosecond nonlinear optics of bright coherent X-ray generation,” Nat. Photonics 4(12), 822–832 (2010). [CrossRef]
  2. P. B. Corkum, F. Krausz, “Attosecond science,” Nat. Phys. 3(6), 381–387 (2007). [CrossRef]
  3. C. M. S. Sears, E. Colby, R. J. England, R. Ischebeck, C. McGuinness, J. Nelson, R. Noble, R. H. Siemann, J. Spencer, D. Walz, T. Plettner, R. L. Byer, “Phase stable net acceleration of electrons from a two-stage optical accelerator,” Phys. Rev. Special Topics – Accelerators and Beams 11(10), 101301 (2008). [CrossRef]
  4. M. J. Thorpe, D. Balslev-Clausen, M. S. Kirchner, J. Ye, “Cavity-enhanced optical frequency comb spectroscopy: application to human breath analysis,” Opt. Express 16(4), 2387–2397 (2008). [CrossRef] [PubMed]
  5. S. A. Diddams, L. Hollberg, V. Mbele, “Molecular fingerprinting with the resolved modes of a femtosecond laser frequency comb,” Nature 445(7128), 627–630 (2007). [CrossRef] [PubMed]
  6. B. Bernhardt, E. Sorokin, P. Jacquet, R. Thon, T. Becker, I. T. Sorokina, N. Picqué, T. W. Hänsch, “Mid-infrared dual-comb spectroscopy with 2.4 μm Cr2+:ZnSe femtosecond lasers,” Appl. Phys. B 100(1), 3–8 (2010). [CrossRef]
  7. R. A. Kaindl, M. Wurm, K. Reimann, P. Hamm, A. M. Weiner, M. Woerner, “Generation, shaping, and characterization of intense femtosecond pulses tunable from 3 to 20 μm,” J. Opt. Soc. Am. B 17(12), 2086–2094 (2000). [CrossRef]
  8. F. Keilmann, C. Gohle, R. Holzwarth, “Time-domain mid-infrared frequency-comb spectrometer,” Opt. Lett. 29(13), 1542–1544 (2004). [CrossRef] [PubMed]
  9. C. Erny, K. Moutzouris, J. Biegert, D. Kühlke, F. Adler, A. Leitenstorfer, U. Keller, “Mid-infrared difference-frequency generation of ultrashort pulses tunable between 3.2 and 4.8 microm from a compact fiber source,” Opt. Lett. 32(9), 1138–1140 (2007). [CrossRef] [PubMed]
  10. A. Gambetta, R. Ramponi, M. Marangoni, “Mid-infrared optical combs from a compact amplified Er-doped fiber oscillator,” Opt. Lett. 33(22), 2671–2673 (2008). [CrossRef] [PubMed]
  11. P. Malara, P. Maddaloni, G. Gagliardi, P. De Natale, “Absolute frequency measurement of molecular transitions by a direct link to a comb generated around 3-microm,” Opt. Express 16(11), 8242–8249 (2008). [CrossRef] [PubMed]
  12. J. H. Sun, B. J. S. Gale, D. T. Reid, “Composite frequency comb spanning 0.4-2.4 microm from a phase-controlled femtosecond Ti:sapphire laser and synchronously pumped optical parametric oscillator,” Opt. Lett. 32(11), 1414–1416 (2007). [CrossRef] [PubMed]
  13. F. Adler, K. C. Cossel, M. J. Thorpe, I. Hartl, M. E. Fermann, J. Ye, “Phase-stabilized, 1.5 W frequency comb at 2.8-4.8 microm,” Opt. Lett. 34(9), 1330–1332 (2009). [CrossRef] [PubMed]
  14. T. J. Kippenberg, R. Holzwarth, S. A. Diddams, “Microresonator-based optical frequency combs,” Science 332(6029), 555–559 (2011). [CrossRef] [PubMed]
  15. N. Leindecker, A. Marandi, R. L. Byer, K. L. Vodopyanov, “Broadband degenerate OPO for mid-infrared frequency comb generation,” Opt. Express 19(7), 6296–6302 (2011). [CrossRef] [PubMed]
  16. K. L. Vodopyanov, E. Sorokin, I. T. Sorokina, P. G. Schunemann, “Mid-IR frequency comb source spanning 4.4-5.4 μm based on subharmonic GaAs optical parametric oscillator,” Opt. Lett. 36(12), 2275–2277 (2011). [CrossRef] [PubMed]
  17. S. T. Wong, T. Plettner, K. L. Vodopyanov, K. Urbanek, M. Digonnet, R. L. Byer, “Self-phase-locked degenerate femtosecond optical parametric oscillator,” Opt. Lett. 33(16), 1896–1898 (2008). [CrossRef] [PubMed]
  18. S. T. Wong, K. L. Vodopyanov, R. L. Byer, “Self-phase-locked divide-by-2 optical parametric oscillator as a broadband frequency comb source,” J. Opt. Soc. Am. B 27(5), 876–882 (2010). [CrossRef]
  19. M. Faraday, “On the forms and states of fluids on vibrating elastic surfaces,” Philos. Trans. R. Soc. Lond. 121, 319–340 (1831).
  20. W. H. Louisell, Coupled mode and parametric electronics (Wiley, New York, 1960).
  21. R. H. Kingston, “Parametric amplification and oscillation at optical frequencies”, Proc. IRE 50, 472 (1962)
  22. A. E. Siegman, “Nonlinear optical effects: an optical power limiter,” Appl. Opt. 1(6), 739–744 (1962). [CrossRef]
  23. C. D. Nabors, S. T. Yang, T. Day, R. L. Byer, “Coherence properties of a doubly-resonant monolithic optical parametric oscillator,” J. Opt. Soc. Am. B 7(5), 815–820 (1990). [CrossRef]
  24. J.-J. Zondy, A. Douillet, A. Tallet, E. Ressayre, M. Le Berre, “Theory of self-phase-locked optical parametric oscillators,” Phys. Rev. A 63(2), 023814 (2001). [CrossRef]
  25. J. von Neumann, “Non-linear capacitance or inductance switching, amplifying and memory organs,” U. S. Patent No. 2,815,488; December, 1957.
  26. E. Goto, “The parametron, a digital computing element which utilizes parametric oscillations,” Proc. IRE 47, 1304–1316 (1959).
  27. J. A. Armstrong, N. Bloembergen, J. Ducuing, P. S. Pershan, “Interaction between light waves in a nonlinear dielectric,” Phys. Rev. 127(6), 1918–1939 (1962). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited