OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 7 — Mar. 26, 2012
  • pp: 7263–7273

Optimizing single mode robustness of the distributed modal filtering rod fiber amplifier

Mette Marie Jørgensen, Sidsel Rübner Petersen, Marko Laurila, Jesper Lægsgaard, and Thomas Tanggaard Alkeskjold  »View Author Affiliations


Optics Express, Vol. 20, Issue 7, pp. 7263-7273 (2012)
http://dx.doi.org/10.1364/OE.20.007263


View Full Text Article

Enhanced HTML    Acrobat PDF (1569 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

High-power fiber amplifiers for pulsed applications require large mode area (LMA) fibers having high pump absorption and near diffraction limited output. Photonic crystal fibers allow realization of short LMA fiber amplifiers having high pump absorption through a pump cladding that is decoupled from the outer fiber diameter. However, achieving ultra low NA for single mode (SM) guidance is challenging, thus different design strategies must be applied. The distributed modal filtering (DMF) design enables SM guidance in ultra low NA fibers with very large cores, where large preform tolerances can be compensated during the fiber draw. Design optimization of the SM bandwidth of the DMF rod fiber is presented. Analysis of band gap properties results in a fourfold increase of the SM bandwidth compared to previous results, achieved by utilizing the first band of cladding modes, which can cover a large fraction of the Yb emission band including wavelengths of 1030 nm and 1064 nm. Design parameters tolerating refractive index fabrication uncertainties of ± 10−4 are targeted to yield stable SM bandwidths.

© 2012 OSA

OCIS Codes
(060.2280) Fiber optics and optical communications : Fiber design and fabrication
(060.2320) Fiber optics and optical communications : Fiber optics amplifiers and oscillators
(060.4005) Fiber optics and optical communications : Microstructured fibers

ToC Category:
Fiber Optics and Optical Communications

History
Original Manuscript: January 18, 2012
Revised Manuscript: March 2, 2012
Manuscript Accepted: March 9, 2012
Published: March 14, 2012

Citation
Mette Marie Jørgensen, Sidsel Rübner Petersen, Marko Laurila, Jesper Lægsgaard, and Thomas Tanggaard Alkeskjold, "Optimizing single mode robustness of the distributed modal filtering rod fiber amplifier," Opt. Express 20, 7263-7273 (2012)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-7-7263


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. D. J. Richardson, J. Nilsson, W. A. Clarkson, “High power fiber lasers: current status and future perspectives [Invited],” J. Opt. Soc. Am. B 27(11), B63–B92 (2010). [CrossRef]
  2. J. Limpert, F. Röser, S. Klingebiel, T. Schreiber, C. Wirth, T. Peschel, R. Eberhardt, A. Tünnermann, “The rising power of fiber lasers and amplifiers,” IEEE J. Sel. Top. Quantum Electron. 13(3), 537–545 (2007). [CrossRef]
  3. W. Wadsworth, R. Percival, G. Bouwmans, J. Knight, P. Russell, “High power air-clad photonic crystal fibre laser,” Opt. Express 11(1), 48–53 (2003). [CrossRef] [PubMed]
  4. J. Limpert, A. Liem, M. Reich, T. Schreiber, S. Nolte, H. Zellmer, A. Tünnermann, J. Broeng, A. Petersson, C. Jakobsen, “Low-nonlinearity single-transverse-mode ytterbium-doped photonic crystal fiber amplifier,” Opt. Express 12(7), 1313–1319 (2004). [CrossRef] [PubMed]
  5. C.-H. Liu, G. Chang, N. Litchinitser, D. Guertin, N. Jacobsen, K. Tankala, and A. Galvanauskas, “Chirally coupled core fibers at 1550-nm and 1064-nm for effectively single-mode core size scaling,” OSA Technical Digest Series (CD), paper CTuBB3 (2007).
  6. S. Lefrancois, T. S. Sosnowski, C.-H. Liu, A. Galvanauskas, F. W. Wise, “Energy scaling of mode-locked fiber lasers with chirally-coupled core fiber,” Opt. Express 19(4), 3464–3470 (2011). [CrossRef] [PubMed]
  7. F. Jansen, F. Stutzki, H.-J. Otto, M. Baumgartl, C. Jauregui, J. Limpert, A. Tünnermann, “The influence of index-depressions in core-pumped Yb-doped large pitch fibers,” Opt. Express 18(26), 26834–26842 (2010). [CrossRef] [PubMed]
  8. F. Jansen, F. Stutzki, H.-J. Otto, T. Eidam, A. Liem, C. Jauregui, J. Limpert, A. Tünnermann, “Thermally induced waveguide changes in active fibers,” Opt. Express 20(4), 3997–4008 (2012). [CrossRef]
  9. F. Jansen, F. Stutzki, C. Jauregui, J. Limpert, A. Tünnermann, “Avoided crossings in photonic crystal fibers,” Opt. Express 19(14), 13578–13589 (2011). [CrossRef] [PubMed]
  10. J. Fini, “Design of solid and microstructure fibers for suppression of higher-order modes,” Opt. Express 13(9), 3477–3490 (2005). [CrossRef] [PubMed]
  11. T. Murao, K. Saitoh, M. Koshiba, “Multiple resonant coupling mechanism for suppression of higher-order modes in all-solid photonic bandgap fibers with heterostructured cladding,” Opt. Express 19(3), 1713–1727 (2011). [CrossRef] [PubMed]
  12. T. T. Alkeskjold, M. Laurila, L. Scolari, J. Broeng, “Single-Mode ytterbium-doped Large-Mode-Area photonic bandgap rod fiber amplifier,” Opt. Express 19(8), 7398–7409 (2011). [CrossRef] [PubMed]
  13. M. Laurila, J. Saby, T. T. Alkeskjold, L. Scolari, B. Cocquelin, F. Salin, J. Broeng, J. Lægsgaard, “Q-switching and efficient harmonic generation from a single-mode LMA photonic bandgap rod fiber laser,” Opt. Express 19(11), 10824–10833 (2011). [CrossRef] [PubMed]
  14. J. Lægsgaard, “Gap formation and guided modes in photonic bandgap fibres with high-index rods,” J. Opt. A 6(8), 798–804 (2004). [CrossRef]
  15. M. Laurila, M. M. Jørgensen, K. R. Hansen, T. T. Alkeskjold, J. Broeng, J. Lægsgaard, “Distributed mode filtering rod fiber amplifier delivering 292W with improved mode stability,” Opt. Express 20(5), 5742–5753 (2012). [CrossRef]
  16. S. Selleri, L. Vincetti, A. Cucinotta, M. Zoboli, “Complex FEM modal solver of optical waveguides with PML boundary conditions,” Opt. Quantum Electron. 33(4/5), 359–371 (2001). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited