OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 7 — Mar. 26, 2012
  • pp: 7274–7289

Drift estimation for single marker switching based imaging schemes

Claudia Geisler, Thomas Hotz, Andreas Schönle, Stefan W. Hell, Axel Munk, and Alexander Egner  »View Author Affiliations

Optics Express, Vol. 20, Issue 7, pp. 7274-7289 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (2782 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



In recent years, the diffraction barrier in fluorescence imaging has been broken and optical nanoscopes now routinely image with resolutions of down to 20 nm, an improvement of more than 10 fold. Because this allows imaging much smaller features and because all super-resolution approaches trade off speed for spatial resolution, mechanical instabilities of the microscopes become a limiting factor. Here, we propose a fully data-driven statistical registration method for drift detection and drift correction for single marker switching (SMS) imaging schemes, including a guideline for parameter choice and quality checks of the drift analysis. The necessary assumptions about the drift are minimal, allowing a model-free approach, but more specific models can easily be integrated. We determine the resulting performance on standard SMS measurements and show that the drift determination can be routinely brought to the range of precision achievable by fiducial marker-tracking methods.

© 2012 OSA

OCIS Codes
(100.3010) Image processing : Image reconstruction techniques
(100.6640) Image processing : Superresolution
(180.2520) Microscopy : Fluorescence microscopy
(350.5730) Other areas of optics : Resolution

ToC Category:
Image Processing

Original Manuscript: October 14, 2011
Revised Manuscript: March 6, 2012
Manuscript Accepted: March 12, 2012
Published: March 15, 2012

Virtual Issues
Vol. 7, Iss. 5 Virtual Journal for Biomedical Optics

Claudia Geisler, Thomas Hotz, Andreas Schönle, Stefan W. Hell, Axel Munk, and Alexander Egner, "Drift estimation for single marker switching based imaging schemes," Opt. Express 20, 7274-7289 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M. Born and E. Wolf, Principles of Optics (Cambridge University Press, 2002).
  2. S. W. Hell, J. Wichmann, “Breaking the diffraction resolution limit by stimulated emission: stimulated emission depletion fluorescence microscopy,” Opt. Lett. 19(11), 780–782 (1994). [CrossRef] [PubMed]
  3. S. W. Hell, “Far-field optical nanoscopy,” Science 316(5828), 1153–1158 (2007). [CrossRef] [PubMed]
  4. E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313(5793), 1642–1645 (2006). [CrossRef] [PubMed]
  5. M. J. Rust, M. Bates, X. Zhuang, “Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM),” Nat. Methods 3(10), 793–796 (2006). [CrossRef] [PubMed]
  6. S. T. Hess, T. P. K. Girirajan, M. D. Mason, “Ultra-high resolution imaging by fluorescence photoactivation localization microscopy,” Biophys. J. 91(11), 4258–4272 (2006). [CrossRef] [PubMed]
  7. A. Egner, C. Geisler, C. von Middendorff, H. Bock, D. Wenzel, R. Medda, M. Andresen, A. C. Stiel, S. Jakobs, C. Eggeling, A. Schönle, S. W. Hell, “Fluorescence nanoscopy in whole cells by asynchronous localization of photoswitching emitters,” Biophys. J. 93(9), 3285–3290 (2007). [CrossRef] [PubMed]
  8. U. Endesfelder, S. van de Linde, S. Wolter, M. Sauer, M. Heilemann, “Subdiffraction-resolution fluorescence microscopy of Myosin-Actin motility,” ChemPhysChem 11(4), 836–840 (2010). [CrossRef] [PubMed]
  9. N. Ji, H. Shroff, H. N. Zhong, E. Betzig, “Advances in the speed and resolution of light microscopy,” Curr. Opin. Neurobiol. 18(6), 605–616 (2008). [CrossRef] [PubMed]
  10. M. Bates, B. Huang, X. W. Zhuang, “Super-resolution microscopy by nanoscale localization of photo-switchable fluorescent probes,” Curr. Opin. Chem. Biol. 12(5), 505–514 (2008). [CrossRef] [PubMed]
  11. C. Geisler, A. Schönle, C. von Middendorff, H. Bock, C. Eggeling, A. Egner, S. W. Hell, “Resolution of l/10 in fluorescence microscopy using fast single molecule photo-switching,” Appl. Phys., A Mater. Sci. Process. 88(2), 223–226 (2007). [CrossRef]
  12. T. J. Gould, V. V. Verkhusha, S. T. Hess, “Imaging biological structures with fluorescence photoactivation localization microscopy,” Nat. Protoc. 4(3), 291–308 (2009). [CrossRef] [PubMed]
  13. M. Kreft, N. Vardjan, M. Stenovec, R. Zorec, “Lateral drift correction in time-laps images by the particle-tracking algorithm,” Eur. Biophys. J. 37(7), 1119–1125 (2008). [CrossRef] [PubMed]
  14. A. M. van Oijen, J. Kohler, J. Schmidt, M. Muller, G. J. Brakenhoff, “Far-field fluorescence microscopy beyond the diffraction limit,” J. Opt. Soc. Am. A 16(4), 909–915 (1999). [CrossRef]
  15. J. Adler, S. N. Pagakis, “Reducing image distortions due to temperature-related microscope stage drift,” J. Microsc. 210(2), 131–137 (2003). [CrossRef] [PubMed]
  16. A. R. Carter, G. M. King, T. A. Ulrich, W. Halsey, D. Alchenberger, T. T. Perkins, “Stabilization of an optical microscope to 0.1 nm in three dimensions,” Appl. Opt. 46(3), 421–427 (2007). [CrossRef] [PubMed]
  17. S. Ram, P. Prabhat, E. S. Ward, R. J. Ober, “Improved single particle localization accuracy with dual objective multifocal plane microscopy,” Opt. Express 17(8), 6881–6898 (2009). [CrossRef] [PubMed]
  18. D. Greenfield, A. L. McEvoy, H. Shroff, G. E. Crooks, N. S. Wingreen, E. Betzig, J. Liphardt, “Self-organization of the escherichia coli chemotaxis network imaged with super-resolution light microscopy,” PLoS Biol. 7(6), e1000137 (2009). [CrossRef] [PubMed]
  19. H. Shroff, C. G. Galbraith, J. A. Galbraith, H. White, J. Gillette, S. Olenych, M. W. Davidson, E. Betzig, “Dual-color superresolution imaging of genetically expressed probes within individual adhesion complexes,” Proc. Natl. Acad. Sci. U.S.A. 104(51), 20308–20313 (2007). [CrossRef] [PubMed]
  20. G. Shtengel, J. A. Galbraith, C. G. Galbraith, J. Lippincott-Schwartz, J. M. Gillette, S. Manley, R. Sougrat, C. M. Waterman, P. Kanchanawong, M. W. Davidson, R. D. Fetter, H. F. Hess, “Interferometric fluorescent super-resolution microscopy resolves 3D cellular ultrastructure,” Proc. Natl. Acad. Sci. U.S.A. 106(9), 3125–3130 (2009). [CrossRef] [PubMed]
  21. M. Bates, B. Huang, G. T. Dempsey, X. Zhuang, “Multicolor super-resolution imaging with photo-switchable fluorescent probes,” Science 317(5845), 1749–1753 (2007). [CrossRef] [PubMed]
  22. B. Huang, W. Wang, M. Bates, X. Zhuang, “Three-Dimensional Super-Resolution Imaging by Stochastic Optical Reconstruction Microscopy,” Science 319(5864), 810–813 (2008). [CrossRef] [PubMed]
  23. M. F. Juette, T. J. Gould, M. D. Lessard, M. J. Mlodzianoski, B. S. Nagpure, B. T. Bennett, S. T. Hess, J. Bewersdorf, “Three-dimensional sub-100 nm resolution fluorescence microscopy of thick samples,” Nat. Methods 5(6), 527–529 (2008). [CrossRef] [PubMed]
  24. M. J. Mlodzianoski, J. M. Schreiner, S. P. Callahan, K. Smolková, A. Dlasková, J. Santorová, P. Ježek, J. Bewersdorf, “Sample drift correction in 3D fluorescence photoactivation localization microscopy,” Opt. Express 19(16), 15009–15019 (2011). [CrossRef] [PubMed]
  25. R. E. Thompson, D. R. Larson, W. W. Webb, “Precise nanometer localization analysis for individual fluorescent probes,” Biophys. J. 82(5), 2775–2783 (2002). [CrossRef] [PubMed]
  26. L. G. Brown, “A Survey of Image Registration Techniques,” Computing Surveys 24(4), 325–376 (1992). [CrossRef]
  27. J. B. Maintz, M. A. Viergever, “A survey of medical image registration,” Med. Image Anal. 2(1), 1–36 (1998). [CrossRef] [PubMed]
  28. D. L. G. Hill, P. G. Batchelor, M. Holden, D. J. Hawkes, “Medical image registration,” Phys. Med. Biol. 46(3), R1–R45 (2001). [CrossRef] [PubMed]
  29. B. Zitova, J. Flusser, “Image registration methods: a survey,” Image Vis. Comput. 21(11), 977–1000 (2003). [CrossRef]
  30. L. Brown, T. Cai, H. Zhou, “Nonparamteric regression in exponential families,” Ann. Stat. 38(4), 2005–2046 (2010). [CrossRef]
  31. J. Pinheiro and D. Bates, Mixed Effects Models in S and S-Plus (Springer, New York, NY, 2000).
  32. W. Härdle, M. Müller, S. Sperlich, and A. Werwatz, Nonparametric and Semiparametric Models (Springer, Berlin, 2004).
  33. I. Testa, A. Schönle, C. von Middendorff, C. Geisler, R. Medda, C. A. Wurm, A. C. Stiel, S. Jakobs, M. Bossi, C. Eggeling, S. W. Hell, A. Egner, “Nanoscale separation of molecular species based on their rotational mobility,” Opt. Express 16(25), 21093–21104 (2008). [CrossRef] [PubMed]
  34. V. N. Belov, M. L. Bossi, J. Fölling, V. P. Boyarskiy, S. W. Hell, “Rhodamine Spiroamides for Multicolor Single-Molecule Switching Fluorescent Nanoscopy,” Chem.-Eur. J. 15(41), 10762–10776 (2009). [CrossRef] [PubMed]
  35. A. Pertsinidis, Y. X. Zhang, S. Chu, “Subnanometre single-molecule localization, registration and distance measurements,” Nature 466(7306), 647–651 (2010). [CrossRef] [PubMed]
  36. C. E. Shannon, “Communication in the presence of noise,” Proc. Inst. Radio Eng. 37(1), 10–21 (1949).
  37. S. Weisberg, Applied Linear Regression (John Wiley & Sons, Hoboken, NJ, 2005).
  38. M. B. Wilk, R. Gnanadesikan, “Probability Plotting Methods for Analysis of Data,” Biometrika 55(1), 1–17 (1968). [PubMed]
  39. A. W. d. Vaart, Asymptotic Statistics (Cambridge University Press, USA, 1998).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited