OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 7 — Mar. 26, 2012
  • pp: 7300–7315

Study on transition from photonic-crystal laser to random laser

Garuda Fujii, Toshiro Matsumoto, Toru Takahashi, and Tsuyoshi Ueta  »View Author Affiliations

Optics Express, Vol. 20, Issue 7, pp. 7300-7315 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (5383 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The dependence of the lasing threshold on the amount of positional disorder in photonic crystal structures is newly studied by means of the finite element method, not of the finite difference time domain method usually used. A two-dimensional model of a photonic crystal consisting of dielectric cylinders arranged on a triangular lattice within a circular region is considered. The cylinders are assumed to be homogeneous and infinitely long. Positional disorder of the cylinders is introduced to the photonic crystals. Optically active medium is introduced to the interspace among the cylinders. The population inversion density of the optically active medium is modeled by the negative imaginary part of dielectric constant. The ratio between radiative power of electromagnetic field without amplification and that with amplification is computed as a function of the frequency and the imaginary part of the dielectric constant, and the threshold of the imaginary part, namely population inversion density for laser action is obtained. These analyses are carried out for various amounts of disorder. The variation of the lasing threshold from photonic-crystal laser to random laser is revealed by systematic computations with numerical method of reliable accuracy for the first time. Moreover, a novel phenomenon, that the lasing threshold have a minimum against the amount of disorder, is found. In order to investigate the properties of the lasing states within the circular system, the distributions of the electric field amplitudes of the states are also calculated.

© 2012 OSA

OCIS Codes
(140.3460) Lasers and laser optics : Lasers
(160.3380) Materials : Laser materials

ToC Category:
Lasers and Laser Optics

Original Manuscript: December 5, 2011
Revised Manuscript: February 5, 2012
Manuscript Accepted: February 15, 2012
Published: March 15, 2012

Garuda Fujii, Toshiro Matsumoto, Toru Takahashi, and Tsuyoshi Ueta, "Study on transition from photonic-crystal laser to random laser," Opt. Express 20, 7300-7315 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. N. M. Lawandy, R. M. Balachandra, A. S. L. Gomez, and E. Sauvain, “Laser action in strongly scattering media,” Nature368, 436–438 (1994). [CrossRef]
  2. D. S. Wiersma, M. P. van Albada, and A. Lagendijk, “Random laser ?” Nature373, 203–204 (1995). [CrossRef]
  3. D. S. Wiersma, “The physics and applications of random lasers,” Nat. Phys.4, 359–367 (2008). [CrossRef]
  4. P. Sebbah, R. Pnini, and A. Z. Genack, “Field and intensity correlation in random media,” Phys. Rev. E62, 7348–7352 (2000). [CrossRef]
  5. P. Sebbah and C. Vanneste, “Random laser in the localized regime,” Phys. Rev. B66, 144202 (2002). [CrossRef]
  6. P. Sebbah, B. Hu, J. K. Klosner, and A. Z. Genack, “Extended quasimodes within nominally localized random waveguides,” Phys. Rev. Lett.96, 183902 (2006). [CrossRef] [PubMed]
  7. C. Vanneste and P. Sebbah, “Selective excitation of localized modes in active random media,” Phys. Rev. Lett.87, 183903 (2001). [CrossRef]
  8. C. Vanneste and P. Sebbah, “Localized modes in random arrays of cylinders,” Phys. Rev. E71, 026612 (2005). [CrossRef]
  9. C. Vanneste, P. Sebbah, and H. Cao, “Lasing with resonant feedback in weakly scattering random systems,” Phys. Rev. Lett.98, 143902 (2007). [CrossRef] [PubMed]
  10. C. Vanneste and P. Sebbah, “Complexity of two-dimensional quasimodes at the transition from weak scattering to anderson localization,” Phys. Rev. A79, 041802 (2009). [CrossRef]
  11. H. Cao, Y. G. Zhao, S. T. Ho, E. W. Seelig, Q. H. Wang, and R. P. H. Chang, “Random laser action in semiconductor powder,” Phys. Rev. Lett.82, 2278–2281 (1999). [CrossRef]
  12. H. Cao, J. Y. Xu, D. Z. Zhang, S. H. Chang, S. T. Ho, E. W. Seeling, X. Liu, and R. P. H. Chang, “Spatial confinement of laser light in active random media,” Phys. Rev. Lett.84, 5584–5587 (2000). [CrossRef] [PubMed]
  13. H. Cao, J. Y. Xu, S. H. Chang, and S. T. Ho, “Transition from amplified spontaneous emission to laser action in strongly scattering media,” Phys. Rev. E61, 1985–1989 (2000). [CrossRef]
  14. S. Mujumdar, M. Ricci, R. Torre, and D. S. Wiersma, “Amplified extended modes in random lasers,” Phys. Rev. Lett.93, 053903 (2004). [CrossRef] [PubMed]
  15. K. Ohtaka, “Energy band of photons and low-energy photon diffraction,” Phys. Rev. B19, 5057–5067 (1979). [CrossRef]
  16. E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett.58, 2059–2062 (1987). [CrossRef] [PubMed]
  17. E. Yablonovitch and T. J. Gmitter, “Photonic band structure: the face-centered-cubic case,” Phys. Rev. Lett.63, 1950–1953 (1989). [CrossRef] [PubMed]
  18. E. Yablonovitch, “Photonic band-gap structures,” J. Opt. Soc. Am. B10, 283–295 (1993). [CrossRef]
  19. G. Fujii, T. Matsumoto, T. Takahashi, and T. Ueta, “A study on optical properties of photonic crystals consisting of hollow rods,” IOP Conf. Ser.: Mater. Sci. Eng.10, 012072 (2010). [CrossRef]
  20. K. Ohtaka, “Density of states of slab photonic crystals and the laser oscillation in photonic crystals,” J. Lightwave Technol.17, 2161–2169 (1999). [CrossRef]
  21. K. Sakoda, “Enhanced light amplification due to group-velocity anomaly peculiar to two- and three-dimensional photonic crystals,” Opt. Express4, 167–176 (1999). [CrossRef] [PubMed]
  22. K. Sakoda, K. Ohtaka, and T. Ueta, “Low-threshold laser oscillation due to group-velocity anomaly peculiar to two- and three-dimensional photonic crystals,” Opt. Express4, 481–489 (1999). [CrossRef] [PubMed]
  23. P. W. Anderson, “Absence of diffusion in certain random lattices,” Phys. Rev.109, 1492–1505 (1958). [CrossRef]
  24. G. Fujii, T. Matsumoto, T. Takahashi, and T. Ueta, “Finite element analysis for laser oscillation in random system consisting of heterogeneous dielectric materials,” Trans. Jpn. Soc. Comput. Methods Eng.10, 117–122 (2010).
  25. G. Fujii, T. Matsumoto, T. Takahashi, and T. Ueta, “A study on the effect of filling factor for laser action in dielectric random media,” (2012). Appl. Phys. A DOI: . [CrossRef]
  26. A. Rodriguez, M. Ibanescu, J. D. Joannopoulos, and S. G. Johnson, “Disorder-immune confinement of light in photonic-crystal cavities,” Opt. Lett.30, 3192–3194 (2005). [CrossRef] [PubMed]
  27. Z.-Y. Li and Z.-Q. Zhang, “Fragility of photonic band gaps in inverse-opal photonic crystals,” Phys. Rev. B62, 1516–1519 (2000). [CrossRef]
  28. E. Lidorikis, M. M. Sigalas, E. N. Economou, and C. M. Soukoulis, “Gap deformation and classical wave localization in disordered two-dimensional photonic-band-gap materials,” Phys. Rev. B61, 13458–13464 (2000). [CrossRef]
  29. T. Schwartz, G. Bartal, S. Fishman, and M. Segev, “Transport and Anderson localization in disordered two-dimensional photonic lattices,” Nature446, 52–55 (2007). [CrossRef] [PubMed]
  30. Y. Lahini, A. Avidan, F. Pozzi, M. Sorel, R. Morandotti, D. N. Christodoulides, and Y. Silberberg, “Anderson localization and nonlinearity in one-dimensional disordered photonic lattices,” Phys. Rev. Lett.100, 013906 (2008). [CrossRef] [PubMed]
  31. H. Li, B. Cheng, and D. Zhang, “Two-dimensional disordered photonic crystals with an average periodic lattice,” Phys. Rev. B56, 10734–10736 (1997). [CrossRef]
  32. M. A. Kaliteevski, J. M. Martinez, D. Cassagne, and J. P. Albert, “Disorder-induced modification of the transmission of light in a two-dimensional photonic crystal,” Phys. Rev. B66, 113101 (2002). [CrossRef]
  33. T. Prasad, V. L. Colvin, and D. M. Mittleman, “The effect of structural disorder on guided resonances in photonic crystal slabs studied with terahertz time-domain spectroscopy,” Opt. Express15, 16954–16965 (2007). [CrossRef] [PubMed]
  34. Y. A. Vlasov, M. A. Kaliteevski, and V. V. Nikolaev, “Different regimes of light localization in disordered photonic crystal,” Phys. Rev. B60, 1555–1562 (1999). [CrossRef]
  35. M. Patterson, S. Hughes, S. Combrié, N.-V.-Q. Tran, A. D. Rossi, R. Gabet, and Y. Jaouën, “Disorder-induced coherent scattering in slow-light photonic crystal waveguides,” Phys. Rev. Lett.102, 253903 (2009). [CrossRef] [PubMed]
  36. R. Ferrini, D. Leuenberger, R. Houdré, H. Benisty, M. Kamp, and A. Forchel, “Disorder-induced losses in planar photonic crystals,” Opt. Lett.31, 1426–1428 (2006). [CrossRef] [PubMed]
  37. M. M. Sigalas, C. M. Soukoulis, C. T. Chan, R. Biswas, and K. M. Ho, “Effect of disorder on photonic band gaps,” Phys. Rev. B59, 12767–12770 (1999). [CrossRef]
  38. A. A. Asatryan, P. A. Robinson, L. C. Botten, R. C. McPhedran, N. A. Nicorovici, and C. M. de Sterke, “Effects of geometric and refractive index disorder on wave propagation in two-dimensional photonic crystals,” Phys. Rev. E62, 5711–5720 (2000). [CrossRef]
  39. W. R. Frei and H. T. Johnson, “Finite-element analysis of disorder effects in photonic crystals,” Phys. Rev. B70, 165116 (2004). [CrossRef]
  40. A. A. Asatryan, P. A. Robinson, L. C. Botten, R. C. McPhedran, N. A. Nicorovici, and C. M. de Sterke, “Effects of disorder on wave propagation in two-dimensional photonic crystals,” Phys. Rev. E60, 6118–6127 (1999). [CrossRef]
  41. H. Li, H. Chen, and X. Qiu, “Band-gap extension of disordered 1d binary photonic crystals,” Physica B279, 164–167 (2000). [CrossRef]
  42. X. Wang and K. Kempa, “Effects of disorder on subwavelength lensing in two-dimensional photonic crystal slabs,” Phys. Rev. B71, 085101 (2005). [CrossRef]
  43. T. N. Langtry, A. A. Asatryan, and L. C. Botten, “Effects of disorder in two-dimensional photonic crystal waveguides,” Phys. Rev. E68, 026611 (2003). [CrossRef]
  44. V. N. Astratov, J. P. Franchak, and S. P. Ashili, “Optical coupling and transport phenomena in chains of spherical dielectric microresonators with size disorder,” Appl. Phys. Lett.85, 5508–5510 (2004). [CrossRef]
  45. K. C. Kwan, X. Zhang, Z. Q. Zhang, and C. T. Chan, “Effects due to disorder on photonic crystal-based waveguides,” Appl. Phys. Lett.82, 4414–4416 (2003). [CrossRef]
  46. D. P. Fuell, S. Hughes, and M. M. Dignam, “Effect of disorder strength on the fracture pattern in heterogeneous networks,” Phys. Rev. B76, 144201 (2008).
  47. D. Gerace and L. C. Andreani, “Effects of disorder on propagation losses and cavity q-factors in photonic crystal slabs,” Photon. Nanostruct. Fundam. Appl.3, 120–128 (2005). [CrossRef]
  48. A. Golshani, H. Pier, E. Kapon, and M. Moser, “Photon mode localization in disordered arrays of vertical cavity surface emitting lasers,” Appl. Phys. Lett.85, 2454–2456 (1999).
  49. J. Topolancik and F. Vollmer, “Random high-q cavities in disordered photonic crystal waveguides,” Appl. Phys. Lett.91, 201102 (2007). [CrossRef]
  50. T. A. Leskova, A. A. Maradudin, I. V. Novikov, A. V. Schegrov, and E. R. Méndez, “Design of one-dimensional band-limited uniform diffusers of light,” Appl. Phys. Lett.73, 1943–1945 (1998). [CrossRef]
  51. E. R. Méndez, E. E. García, T. A. Leskova, A. A. Maradudin, J. Muñoz-Lopez, and I. Simonsen, “Design of one-dimensional random surfaces with specified scattering properties,” Appl. Phys. Lett.81, 798–800 (2002). [CrossRef]
  52. E. R. Méndez, T. A. Leskova, A. A. Maradudin, and J. Muñoz-Lopez, “Design of two-dimensional random surfaces with specified scattering properties,” Opt. Lett.29, 2917–2919 (2004). [CrossRef]
  53. S. Fan, P. R. Villeneuve, and J. D. Joannopoulos, “Theoretical investigation of fabrication-related disorder on the properties of photonic crystals,” J. Appl. Phys.78, 1415–1418 (1995). [CrossRef]
  54. L. O. Faolain, T. P. White, D. O. Brien, X. Yuan, M. D. Settle, and T. F. Krauss, “Dependence of extrinsic loss on group velocity in photonic crystal waveguides,” Opt. Express15, 13129–13138 (2007). [CrossRef]
  55. K. C. Kwan, X. M. Tao, and G. D. Peng, “Transition of lasing modes in disordered active photonic crystals,” Opt. Lett.32, 2720–2722 (2007). [CrossRef] [PubMed]
  56. J. P. Berenger, “A perfectly matched layer for the absorption of electromagnetic waves,” J. Comput. Phys.114, 185–200 (1994). [CrossRef]
  57. A. Bermúdez, L. Hervella-Nieto, A. Prieto, and R. Rodríguez, “An exact bounded pml for the helmholtz equation,” C. R. Acad, Sci. Paris, Ser. I339, 803–808 (2004). [CrossRef]
  58. A. Bermúdez, L. Hervella-Nieto, A. Prieto, and R. Rodríguez, “Numerical simulation of time-harmonic scattering problems with an optimal PML,” Var. Formul. Mech.:Theory Appl.13, 58–71 (2006).
  59. A. Bermúdez, L. Hervella-Nieto, A. Prieto, and R. Rodríguez, “An optimal perfectly matched layer with unbounded absorbing function for time-harmonic acoustic scattering problems,” J. Comput. Phys.223, 469–488 (2007). [CrossRef]
  60. A. C. Cangellaris and D. B. Wright, “Analysis of the numerical error caused by the stair-stepped approximation of a conducting boundary in FDTD simulations of electromagnetic phenomena,” IEEE Trans. Antennas Propag.39, 1518–1525 (1991). [CrossRef]
  61. A. Akyurtlu, D. H. Werner, V. Veremey, D. J. Steich, and K. Aydin, “Staircasing errors in FDTD at an air-dielectric interface,” IEEE Microwave Guided Wave Lett.9, 444–446 (1999). [CrossRef]
  62. K. H. Dridi, J. S. Hesthaven, and A. Ditkowski, “Staircase-free finite-difference time-domain formulation for general materials in complex geometries,” IEEE Trans. Antennas Propag.49, 749–756 (2001). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited