OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 7 — Mar. 26, 2012
  • pp: 7316–7322

PMD tolerant direct-detection polarization division multiplexed OFDM systems with MIMO processing

Chia-Chien Wei, Chun-Ting Lin, and Chih-Yun Wang  »View Author Affiliations


Optics Express, Vol. 20, Issue 7, pp. 7316-7322 (2012)
http://dx.doi.org/10.1364/OE.20.007316


View Full Text Article

Enhanced HTML    Acrobat PDF (1001 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

This work proposes a novel direct-detection polarization division multiplexed OFDM scheme without the need of dynamic polarization control at a polarization-diverse receiver, and the proposed scheme is robust against polarization mode dispersion. Setting the frequency difference between two polarization-orthogonal reference carriers as one subcarrier spacing, possible signal fading can be avoided, and the corresponding interference from adjacent subcarriers is eliminated by a novel MIMO algorithm. The penalty caused by high channel matrix condition number can be decreased by inserting empty tones among subcarriers, and the polarization-dependent OSNR penalty at the BER of 10−3 is <3.6 dB with an empty tone inserted every 8 subcarriers. Moreover, the numerical results demonstrate the 16 × 103-ps/nm chromatic dispersion and the 300-ps differential group delay will not induce additional penalty.

© 2012 OSA

OCIS Codes
(060.2330) Fiber optics and optical communications : Fiber optics communications
(060.4080) Fiber optics and optical communications : Modulation

ToC Category:
Fiber Optics and Optical Communications

History
Original Manuscript: December 5, 2011
Revised Manuscript: February 3, 2012
Manuscript Accepted: March 3, 2012
Published: March 15, 2012

Citation
Chia-Chien Wei, Chun-Ting Lin, and Chih-Yun Wang, "PMD tolerant direct-detection polarization division multiplexed OFDM systems with MIMO processing," Opt. Express 20, 7316-7322 (2012)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-7-7316


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. Y. Ma, Q. Yang, Y. Tang, S. Chen, W. Shieh, “1-Tb/s single-channel coherent optical OFDM transmission over 600-km SSMF fiber with subwavelength bandwidth access,” Opt. Express 17(11), 9421–9427 (2009). [CrossRef] [PubMed]
  2. S. L. Jansen, A. Al Amin, H. Takahashi, I. Morita, H. Tanaka, “132.2-Gb/s PDM-8QAM-OFDM transmission at 4-b/s/Hz spectral efficiency,” IEEE Photon. Technol. Lett. 21(12), 802–804 (2009). [CrossRef]
  3. H. Takahashi, A. Al Amin, S. L. Jansen, I. Morita, H. Tanaka, “Highly spectrally efficient DWDM transmission at 7.0 b/s/Hz using 8×65.1-Gb/s coherent PDM-OFDM,” J. Lightwave Technol. 28(4), 406–414 (2010). [CrossRef]
  4. D.-Z. Hsu, C.-C. Wei, H.-Y. Chen, W.-Y. Li, J. Chen, “Cost-effective 33-Gbps intensity modulation direct detection multi-band OFDM LR-PON system employing a 10-GHz-based transceiver,” Opt. Express 19(18), 17546–17556 (2011). [CrossRef] [PubMed]
  5. B. J. Schmidt, Z. Zan, L. B. Du, A. J. Lowery, “120 Gbit/s over 500-km using single-band polarization-multiplexed self-coherent optical OFDM,” J. Lightwave Technol. 28(4), 328–335 (2010). [CrossRef]
  6. M. Mayrock and H. Haunstein, “PMD tolerant direct-detection optical OFDM system,” in Proc. ECOC’07 (2007), paper 5.2.5.
  7. W.-R. Peng, K.-M. Feng, and A. E. Willner, “Direct-detected polarization division multiplexed OFDM systems with self-polarization diversity,” in Proc. CLEOS’08 (2008), paper MH3.
  8. D. Qian, N. Cvijetic, J. Hu, T. Wang, “108 Gb/s OFDMA-PON with polarization multiplexing and direct detection,” J. Lightwave Technol. 28(4), 484–493 (2010). [CrossRef]
  9. A. Amin, H. Takahashi, I. Morita, H. Tanaka, “100-Gb/s direct-detection OFDM transmission on independent polarization tributaries,” IEEE Photon. Technol. Lett. 22(7), 468–470 (2010). [CrossRef]
  10. C.-T. Lin, C.-C. Wei, M.-I. Chao, “Phase noise suppression of optical OFDM signals in 60-GHz RoF transmission system,” Opt. Express 19(11), 10423–10428 (2011). [CrossRef] [PubMed]
  11. W.-R. Peng, “Analysis of laser phase noise effect in direct-detection optical OFDM transmission,” J. Lightwave Technol. 28(17), 2526–2536 (2010). [CrossRef]
  12. A. J. Lowery, “Improving sensitivity and spectra efficiency in direct-detection optical OFDM systems,” in Proc. OFC’08. (2008), paper OMM4.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited