OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 7 — Mar. 26, 2012
  • pp: 7323–7337

Incorporation of an experimentally determined MTF for spatial frequency filtering and deconvolution during optical projection tomography reconstruction

Lingling Chen, James McGinty, Harriet B. Taylor, Laurence Bugeon, Jonathan R. Lamb, Margaret J. Dallman, and Paul M. W. French  »View Author Affiliations


Optics Express, Vol. 20, Issue 7, pp. 7323-7337 (2012)
http://dx.doi.org/10.1364/OE.20.007323


View Full Text Article

Enhanced HTML    Acrobat PDF (2158 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We demonstrate two techniques to improve the quality of reconstructed optical projection tomography (OPT) images using the modulation transfer function (MTF) as a function of defocus experimentally determined from tilted knife-edge measurements. The first employs a 2-D binary filter based on the MTF frequency cut-off as an additional filter during back-projection reconstruction that restricts the high frequency information to the region around the focal plane and progressively decreases the spatial frequency bandwidth with defocus. This helps to suppress “streak” artifacts in OPT data acquired at reduced angular sampling, thereby facilitating faster OPT acquisitions. This method is shown to reduce the average background by approximately 72% for an NA of 0.09 and by approximately 38% for an NA of 0.07 compared to standard filtered back-projection. As a biological illustration, a Fli:GFP transgenic zebrafish embryo (3 days post-fertilisation) was imaged to demonstrate the improved imaging speed (a quarter of the acquisition time). The second method uses the MTF to produce an appropriate deconvolution filter that can be used to correct for the spatial frequency modulation applied by the imaging system.

© 2012 OSA

OCIS Codes
(170.6900) Medical optics and biotechnology : Three-dimensional microscopy
(170.6960) Medical optics and biotechnology : Tomography

ToC Category:
Medical Optics and Biotechnology

History
Original Manuscript: December 13, 2011
Revised Manuscript: January 13, 2012
Manuscript Accepted: January 30, 2012
Published: March 15, 2012

Virtual Issues
Vol. 7, Iss. 5 Virtual Journal for Biomedical Optics

Citation
Lingling Chen, James McGinty, Harriet B. Taylor, Laurence Bugeon, Jonathan R. Lamb, Margaret J. Dallman, and Paul M. W. French, "Incorporation of an experimentally determined MTF for spatial frequency filtering and deconvolution during optical projection tomography reconstruction," Opt. Express 20, 7323-7337 (2012)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-7-7323


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. A. Conchello, J. W. Lichtman, “Optical sectioning microscopy,” Nat. Methods 2(12), 920–931 (2005). [CrossRef] [PubMed]
  2. W. Denk, J. H. Strickler, W. W. Webb, “2-Photon Laser Scanning Fluorescence Microscopy,” Science 248(4951), 73–76 (1990). [CrossRef]
  3. Y. Barad, H. Eisenberg, M. Horowitz, Y. Silberberg, “Nonlinear scanning laser microscopy by third harmonic generation,” Appl. Phys. Lett. 70(8), 922–924 (1997). [CrossRef]
  4. J. Sharpe, U. Ahlgren, P. Perry, B. Hill, A. Ross, J. Hecksher-Sørensen, R. Baldock, D. Davidson, “Optical projection tomography as a tool for 3D microscopy and gene expression studies,” Science 296(5567), 541–545 (2002). [CrossRef] [PubMed]
  5. J. Huisken, J. Swoger, F. Del Bene, J. Wittbrodt, E. H. K. Stelzer, “Optical sectioning deep inside live embryos by selective plane illumination microscopy,” Science 305(5686), 1007–1009 (2004). [CrossRef] [PubMed]
  6. H. U. Dodt, U. Leischner, A. Schierloh, N. Jährling, C. P. Mauch, K. Deininger, J. M. Deussing, M. Eder, W. Zieglgänsberger, K. Becker, “Ultramicroscopy: three-dimensional visualization of neuronal networks in the whole mouse brain,” Nat. Methods 4(4), 331–336 (2007). [CrossRef] [PubMed]
  7. S. A. Boppart, M. E. Brezinski, B. E. Bouma, G. J. Tearney, J. G. Fujimoto, “Investigation of developing embryonic morphology using optical coherence tomography,” Dev. Biol. 177(1), 54–63 (1996). [CrossRef] [PubMed]
  8. A. C. Kak and M. Slaney, Principles of Computerized Tomographic Imaging, R. E. O’Malley ed. (SIAM, IEEE Press, New York, 1988).
  9. C. Vinegoni, C. Pitsouli, D. Razansky, N. Perrimon, V. Ntziachristos, “In vivo imaging of Drosophila melanogaster pupae with mesoscopic fluorescence tomography,” Nat. Methods 5(1), 45–47 (2008). [CrossRef] [PubMed]
  10. U. J. Birk, M. Rieckher, N. Konstantinides, A. Darrell, A. Sarasa-Renedo, H. Meyer, N. Tavernarakis, J. Ripoll, “Correction for specimen movement and rotation errors for in-vivo Optical Projection Tomography,” Biomed. Opt. Express 1(1), 87–96 (2010). [CrossRef] [PubMed]
  11. J. McGinty, H. B. Taylor, L. Chen, L. Bugeon, J. R. Lamb, M. J. Dallman, P. M. W. French, “In vivo fluorescence lifetime optical projection tomography,” Biomed. Opt. Express 2(5), 1340–1350 (2011). [CrossRef] [PubMed]
  12. J. R. Walls, J. G. Sled, J. Sharpe, R. M. Henkelman, “Correction of artefacts in optical projection tomography,” Phys. Med. Biol. 50(19), 4645–4665 (2005). [CrossRef] [PubMed]
  13. U. J. Birk, A. Darrell, N. Konstantinides, A. Sarasa-Renedo, J. Ripoll, “Improved reconstructions and generalized filtered back projection for optical projection tomography,” Appl. Opt. 50(4), 392–398 (2011). [CrossRef] [PubMed]
  14. W. Xia, R. M. Lewitt, P. R. Edholm, “Fourier correction for spatially variant collimator blurring in SPECT,” IEEE Trans. Med. Imaging 14(1), 100–115 (1995). [CrossRef] [PubMed]
  15. J. R. Walls, J. G. Sled, J. Sharpe, R. M. Henkelman, “Resolution improvement in emission optical projection tomography,” Phys. Med. Biol. 52(10), 2775–2790 (2007). [CrossRef] [PubMed]
  16. Q. Miao, J. Hayenga, M. G. Meyer, T. Neumann, A. C. Nelson, E. J. Seibel, “Resolution improvement in optical projection tomography by the focal scanning method,” Opt. Lett. 35(20), 3363–3365 (2010). [CrossRef] [PubMed]
  17. S. E. Reichenbach, S. K. Park, R. Narayanswamy, “Characterizing digital image acquisition devices,” Opt. Eng. 30(2), 170–177 (1991). [CrossRef]
  18. J. M. Boone, J. A. Seibert, “An analytical edge spread function model for computer fitting and subsequent calculation of the LSF and MTF,” Med. Phys. 21(10), 1541–1545 (1994). [CrossRef] [PubMed]
  19. A. M. Petzold, V. M. Bedell, N. J. Boczek, J. J. Essner, D. Balciunas, K. J. Clark, S. C. Ekker, “SCORE imaging: specimen in a corrected optical rotational enclosure,” Zebrafish 7(2), 149–154 (2010). [CrossRef] [PubMed]
  20. M. A. Haidekker, “Optical transillumination tomography with tolerance against refraction mismatch,” Comput. Methods Programs Biomed. 80(3), 225–235 (2005). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Supplementary Material


» Media 1: AVI (2622 KB)     
» Media 2: AVI (2850 KB)     
» Media 3: AVI (2862 KB)     
» Media 4: AVI (2850 KB)     
» Media 5: AVI (4392 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited