OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 7 — Mar. 26, 2012
  • pp: 7338–7349

Evaluation of sCMOS cameras for detection and localization of single Cy5 molecules

Saumya Saurabh, Suvrajit Maji, and Marcel P. Bruchez  »View Author Affiliations

Optics Express, Vol. 20, Issue 7, pp. 7338-7349 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (1164 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The ability to detect single molecules over the electronic noise requires high performance detector systems. Electron Multiplying Charge-Coupled Device (EMCCD) cameras have been employed successfully to image single molecules. Recently, scientific Complementary Metal Oxide Semiconductor (sCMOS) based cameras have been introduced with very low read noise at faster read out rates, smaller pixel sizes and a lower price compared to EMCCD cameras. In this study, we have compared the two technologies using two EMCCD and three sCMOS cameras to detect single Cy5 molecules. Our findings indicate that the sCMOS cameras perform similar to EMCCD cameras for detecting and localizing single Cy5 molecules.

© 2012 OSA

OCIS Codes
(110.2970) Imaging systems : Image detection systems
(180.2520) Microscopy : Fluorescence microscopy

ToC Category:
Imaging Systems

Original Manuscript: January 4, 2012
Revised Manuscript: February 23, 2012
Manuscript Accepted: March 5, 2012
Published: March 15, 2012

Virtual Issues
Vol. 7, Iss. 5 Virtual Journal for Biomedical Optics

Saumya Saurabh, Suvrajit Maji, and Marcel P. Bruchez, "Evaluation of sCMOS cameras for detection and localization of single Cy5 molecules," Opt. Express 20, 7338-7349 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. G. J. Schütz, H. Schindler, T. Schmidt, “Single-molecule microscopy on model membranes reveals anomalous diffusion,” Biophys. J. 73(2), 1073–1080 (1997). [CrossRef] [PubMed]
  2. A. A. Deniz, T. A. Laurence, G. S. Beligere, M. Dahan, A. B. Martin, D. S. Chemla, P. E. Dawson, P. G. Schultz, S. Weiss, “Single-molecule protein folding: diffusion fluorescence resonance energy transfer studies of the denaturation of chymotrypsin inhibitor 2,” Proc. Natl. Acad. Sci. U.S.A. 97(10), 5179–5184 (2000). [CrossRef] [PubMed]
  3. E. G. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313(5793), 1642–1645 (2006). [CrossRef] [PubMed]
  4. M. J. Rust, M. Bates, X. Zhuang, “Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM),” Nat. Methods 3(10), 793–796 (2006). [CrossRef] [PubMed]
  5. S. T. Hess, T. P. K. Girirajan, M. D. Mason, “Ultra-high resolution imaging by fluorescence photoactivation localization microscopy,” Biophys. J. 91(11), 4258–4272 (2006). [CrossRef] [PubMed]
  6. J. K. Trautman, J. J. Macklin, L. E. Brus, E. Betzig, “Near-field spectroscopy of single molecules at room temperature,” Nature 369(6475), 40–42 (1994). [CrossRef]
  7. W. E. Moerner, D. P. Fromm, “Methods of single-molecule fluorescence spectroscopy and microscopy,” Rev. Sci. Instrum. 74(8), 3597–3619 (2003). [CrossRef]
  8. X. Michalet, A. N. Kapanidis, T. Laurence, F. Pinaud, S. Doose, M. Pflughoefft, S. Weiss, “The power and prospects of fluorescence microscopies and spectroscopies,” Annu. Rev. Biophys. Biomol. Struct. 32(1), 161–182 (2003). [CrossRef] [PubMed]
  9. D. Toomre and J. B. Pawley, Handbook of Biological Confocal Microscopy (Springer, 2006), Chap. 10.
  10. P. Vu, X. Liu, and D. Laxson, “Large area detectors and new sensor technologies at Fairchild Imaging,” in High Energy, Optical, and Infrared Detectors for Astronomy II, D. A. Dorn and A. D. Holland, eds., Proc. SPIE 6276, 5–12 (2006).
  11. M. Bigas, E. Cabruja, J. Forest, J. Salvi, “Review of CMOS image sensors,” Microelectron. J. 37(5), 433–451 (2006). [CrossRef]
  12. D. Joseph, S. Collins, “Modeling, calibration, and correction of nonlinear illumination-dependent fixed pattern noise in logarithmic CMOS image sensors,” IEEE Trans. Instrum. Meas. 51(5), 996–1001 (2002). [CrossRef]
  13. Z.-L. Huang, H. Zhu, F. Long, H. Ma, L. Qin, Y. Liu, J. Ding, Z. Zhang, Q. Luo, S. Zeng, “Localization-based super-resolution microscopy with an sCMOS camera,” Opt. Express 19(20), 19156–19168 (2011). [CrossRef] [PubMed]
  14. A. Edelstein,, N. Amodaj, K. Hoover, R. Vale, N. Stuurman, “Computer control of microscopes using μManager,” Curr. Protoc. Mol. Biol. 14, 1–17 (2010).
  15. M. K. Cheezum, W. F. Walker, W. H. Guilford, “Quantitative comparison of algorithms for tracking single fluorescent particles,” Biophys. J. 81(4), 2378–2388 (2001). [CrossRef] [PubMed]
  16. R. J. Ober, S. Ram, E. S. Ward, “Localization accuracy in single-molecule microscopy,” Biophys. J. 86(2), 1185–1200 (2004). [CrossRef] [PubMed]
  17. F. Aguet, D. Van De Ville, M. Unser, “A maximum-likelihood formalism for sub-resolution axial localization of fluorescent nanoparticles,” Opt. Express 13(26), 10503–10522 (2005). [CrossRef] [PubMed]
  18. S. M. Kay, Fundamentals of Statistical Signal Processing: Estimation Theory (Prentice-Hall, 1993), Chap. 3.
  19. C. S. Smith, N. Joseph, B. Rieger, K. A. Lidke, “Fast, single-molecule localization that achieves theoretically minimum uncertainty,” Nat. Methods 7(5), 373–375 (2010). [CrossRef] [PubMed]
  20. J. Wiedenmann, S. Ivanchenko, F. Oswald, F. Schmitt, C. Roecker, A. Salih, K. Spindler, G. U. Nienhaus, “EosFP, a fluorescent marker protein with UV-inducible green-to-red fluorescence conversion,” Proc. Natl. Acad. Sci. U.S.A. 101(45), 15905–15910 (2004). [CrossRef] [PubMed]
  21. L. A. Ernst, R. K. Gupta, R. B. Mujumdar, A. S. Waggoner, “Cyanine dye labeling reagents for sulfhydryl groups,” Cytometry 10(1), 3–10 (1989). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited