OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 7 — Mar. 26, 2012
  • pp: 7404–7414

High speed silicon microring modulator employing dynamic intracavity energy balance

Yunchu Li, Lawrence S. Stewart, and P. Daniel Dapkus  »View Author Affiliations


Optics Express, Vol. 20, Issue 7, pp. 7404-7414 (2012)
http://dx.doi.org/10.1364/OE.20.007404


View Full Text Article

Enhanced HTML    Acrobat PDF (1232 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

High speed coupling-modulation of a microring-based light drop structure is proposed, which removes severe signal distortion due to intracavity energy depletion and separates the modulation speed from the resonator linewidth restriction. Extinction ratio improvement from <1 dB to >20 dB with 40 Gb/s non-return-to-zero (NRZ) signals is obtained with 25 times smaller drive voltage. The tolerance to active ring propagation loss is increased from 5 dB/cm to over 25 dB/cm with less than 5% modulation bandwidth reduction. The possibility of obtaining 160 Gb/s NRZ signal with no more than 4 V drive voltage and less than 5 dB insertion loss is highlighted.

© 2012 OSA

OCIS Codes
(060.0060) Fiber optics and optical communications : Fiber optics and optical communications
(130.0130) Integrated optics : Integrated optics
(200.4650) Optics in computing : Optical interconnects
(130.4110) Integrated optics : Modulators

ToC Category:
Integrated Optics

History
Original Manuscript: January 3, 2012
Revised Manuscript: March 5, 2012
Manuscript Accepted: March 12, 2012
Published: March 16, 2012

Citation
Yunchu Li, Lawrence S. Stewart, and P. Daniel Dapkus, "High speed silicon microring modulator employing dynamic intracavity energy balance," Opt. Express 20, 7404-7414 (2012)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-7-7404


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. L. Liao, D. Samara-Rubio, M. Morse, A. Liu, D. Hodge, D. Rubin, U. Keil, and T. Franck, “High speed silicon Mach-Zehnder modulator,” Opt. Express13(8), 3129–3135 (2005). [CrossRef] [PubMed]
  2. T. Sadagopan, S. J. Choi, K. Djordjev, P. D. Dapkus, and S. J. Choi, “Carrier-induced refractive index changes in InP-based circular micro resonators for low-voltage high-speed modulation,” IEEE Photon. Technol. Lett.17(2), 414–416 (2005). [CrossRef]
  3. A. Yariv, “Critical coupling and its control in optical waveguide-ring resonator systems,” IEEE Photon. Technol. Lett.14(4), 483–485 (2002). [CrossRef]
  4. Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature435(7040), 325–327 (2005). [CrossRef] [PubMed]
  5. C. Li, L. Zhou, and A. W. Poon, “Silicon microring carrier-injection-based modulators/switches with tunable extinction ratios and OR-logic switching by using waveguide cross-coupling,” Opt. Express15(8), 5069–5076 (2007). [CrossRef] [PubMed]
  6. D. M. Gill, S. S. Patel, M. Rasras, K.-Y. Tu, A. E. White, Y.-K. Chen, A. Pomerene, D. Carothers, R. L. Kamocsai, C. M. Hill, and J. Beattie, “CMOS-compatible Si-ring-assisted Mach–Zehnder interferometer with internal bandwidth equalization,” IEEE J. Sel. Top. Quantum Electron.16(1), 45–52 (2010). [CrossRef]
  7. S. Akiyama, T. Kurahashi, T. Baba, N. Hatori, T. Usuki, and T. Yamamoto, “1-Vpp 10-Gb/s operation of slow-light silicon Mach-Zehnder modulator in wavelength range of 1 nm,” in IEEE Conference on Group IV Photonics 2010, pp. 45–47 (2010)
  8. A. M. Gutierrez, A. Brimont, G. Rasigade, M. Ziebell, D. Marris-Morini, J.-M. Fedeli, L. Vivien, J. Marti, and P. Sanchis, “Ring-assisted Mach–Zehnder interferometer silicon modulator for enhanced performance,” J. Lightwave Technol.30(1), 9–14 (2012). [CrossRef]
  9. R. Soref, J. Guo, and G. Sun, “Low-energy MOS depletion modulators in silicon-on-insulator micro-donut resonators coupled to bus waveguides,” Opt. Express19(19), 18122–18134 (2011). [CrossRef] [PubMed]
  10. D. Miller, “Device requirements for optical interconnects to silicon chips,” Proc. IEEE97(7), 1166–1185 (2009). [CrossRef]
  11. Y. Li, L. Zhang, M. Song, B. Zhang, J.-Y. Yang, R. G. Beausoleil, A. E. Willner, and P. D. Dapkus, “Coupled-ring-resonator-based silicon modulator for enhanced performance,” Opt. Express16(17), 13342–13348 (2008). [CrossRef] [PubMed]
  12. W. M. J. Green, M. J. Rooks, L. Sekaric, and Y. A. Vlasov, “Optical modulation using anti-crossing between paired amplitude and phase resonators,” Opt. Express15(25), 17264–17272 (2007). [CrossRef] [PubMed]
  13. T. Ye, Y. Zhou, C. Yan, Y. Li, and Y. Su, “Chirp-free optical modulation using a silicon push-pull coupling microring,” Opt. Lett.34(6), 785–787 (2009). [CrossRef] [PubMed]
  14. W. D. Sacher and J. K. S. Poon, “Characteristics of microring resonators with waveguide-resonator coupling modulation,” J. Lightwave Technol.27(17), 3800–3811 (2009). [CrossRef]
  15. T. Ye and C. Xinran, “On power consumption of silicon-microring-based optical modulators,” J. Lightwave Technol.28(11), 1615–1623 (2010). [CrossRef]
  16. W. D. Sacher, W. M. Green, S. Assefa, T. Barwicz, S. M. Shank, Y. A. Vlasov, and J. Poon, “Controlled coupling in silicon microrings for high-speed, high extinction ratio, and low-chirp modulation,” in 2011 CLEO: Laser Applications to Photonic Applications, (CLEO, Baltimore, 2011), paper PDPA8.
  17. M. A. Popović, “Resonant optical modulators beyond conventional energy efficiency and modulation frequency limitations,” in Conference on Integrated Photonics Research, Silicon and Nanophotonics (IPRSN) Monterey, CA (2010), paper IMC2.
  18. L. Zhang, J.-Y. Yang, M. Song, Y. Li, B. Zhang, R. G. Beausoleil, and A. E. Willner, “Microring-based modulation and demodulation of DPSK signal,” Opt. Express15(18), 11564–11569 (2007). [CrossRef] [PubMed]
  19. B. E. Little, S. T. Chu, H. A. Haus, J. Foresi, and J.-P. Laine, “Microring resonator channel dropping filters,” J. Lightwave Technol.15(6), 998–1005 (1997). [CrossRef]
  20. R. Pafchek, R. Tummidi, J. Li, M. A. Webster, E. Chen, and T. L. Koch, “Low-loss silicon-on-insulator shallow-ridge TE and TM waveguides formed using thermal oxidation,” Appl. Opt.48(5), 958–963 (2009). [CrossRef] [PubMed]
  21. Q. Li, M. Soltani, S. Yegnanarayanan, and A. Adibi, “Design and demonstration of compact, wide bandwidth coupled-resonator filters on a silicon-on- insulator platform,” Opt. Express17(4), 2247–2254 (2009). [CrossRef] [PubMed]
  22. M. Soltani, S. Yegnanarayanan, Q. Li, and A. Adibi, “Systematic engineering of waveguide-resonator coupling for silicon microring/microdisk/racetrack resonators: theory and experiment,” IEEE J. Quantum Electron.46(8), 1158–1169 (2010). [CrossRef]
  23. V. M. N. Passaro and F. Dell’Olio, “Scaling and optimization of MOS optical modulators in nanometer SOI waveguides,” IEEE Trans. NanoTechnol.7(4), 401–408 (2008). [CrossRef]
  24. J. Fujikata, J. Ushida, and M.-B. Yu, Z. ShiYang, D. Liang, P. L. Guo-Qiang, D.-L. Kwong, and T. Nakamura, “25 GHz operation of silicon optical modulator with projection MOS structure,” 2010 OFC: Collocated National Fiber Optic Engineers Conference, (OFC/NFOEC, San Diego 2010) paper OMI3.
  25. M. Song, L. Zhang, R. G. Beausoleil, and A. E. Willner, “Nonlinear Distortion in a Silicon Microring-Based Electro-Optic Modulator for Analog Optical Links,” IEEE J. Sel. Top. Quantum Electron.16(1), 185–191 (2010). [CrossRef]
  26. L. Ansheng, D. Samara-Rubio, L. Liao, and M. Paniccia, “Scaling the modulation bandwidth and phase efficiency of a silicon optical modulator,” IEEE J. Sel. Top. Quantum Electron.11(2), 367–372 (2005). [CrossRef]
  27. L. S. Stewart and P. D. Dapkus, “In-plane thermally tuned silicon-on-insulator wavelength selective reflector,” in Integrated Photonics Research, Silicon and Nanophotonics, OSA Technical Digest (CD) (Optical Society of America, 2010), paper IME2.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited