OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 7 — Mar. 26, 2012
  • pp: 7436–7444

Investigating the effectiveness of thermally poling optical fibers with various internal electrode configurations

Honglin An and Simon Fleming  »View Author Affiliations

Optics Express, Vol. 20, Issue 7, pp. 7436-7444 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (2648 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Twin-hole fibers were thermally poled with different internal electrode configurations, including having only one anode wire in the hole, two anode wires in the two holes, one cathode wire, and two cathode wires in the holes, in comparison to the conventional one anode wire and one cathode wire combination. Second harmonic microscopy was utilized to visually reveal the spatial distribution and to measure the magnitude of the induced second-order optical nonlinearity within the poled fibers. It was found that both one- and two-anode configurations resulted in strong nonlinearity comparable with the conventional case but the two-anode configuration was more reproducible than the one-anode case; for the one-cathode-wire and two-cathode-wire configuration, strong nonlinearity in a ring shape concentric with the fiber outer surface was induced as if the cathode metal wire were in the center of the twin-hole fiber rather than substantially offset. These new results provide strong support for the proposed model of a “self-adjustment” mechanism and point the way to simplified and more repeatable experimental techniques.

© 2012 OSA

OCIS Codes
(190.4160) Nonlinear optics : Multiharmonic generation
(190.4370) Nonlinear optics : Nonlinear optics, fibers
(190.4400) Nonlinear optics : Nonlinear optics, materials

ToC Category:
Lasers and Laser Optics

Original Manuscript: February 7, 2012
Revised Manuscript: March 8, 2012
Manuscript Accepted: March 12, 2012
Published: March 16, 2012

Honglin An and Simon Fleming, "Investigating the effectiveness of thermally poling optical fibers with various internal electrode configurations," Opt. Express 20, 7436-7444 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. R. A. Myers, N. Mukherjee, S. R. J. Brueck, “Large second-order nonlinearity in poled fused silica,” Opt. Lett. 16(22), 1732–1734 (1991). [CrossRef] [PubMed]
  2. W. Margulis, F. Laurell, “Interferometric study of poled glass under etching,” Opt. Lett. 21(21), 1786–1788 (1996). [CrossRef] [PubMed]
  3. T. G. Alley, S. R. J. Brueck, “Visualization of the nonlinear optical space-charge region of bulk thermally poled fused-silica glass,” Opt. Lett. 23(15), 1170–1172 (1998). [CrossRef] [PubMed]
  4. D. Pureur, A. C. Liu, M. J. F. Digonnet, G. S. Kino, “Absolute measurement of the second-order nonlinearity profile in poled silica,” Opt. Lett. 23(8), 588–590 (1998). [CrossRef] [PubMed]
  5. P. G. Kazansky, L. Dong, P. St. J. Russell, “High second-order nonlinearities in poled silicate fibers,” Opt. Lett. 19(10), 701–703 (1994). [CrossRef] [PubMed]
  6. D. Wong, W. Xu, S. Fleming, M. Janos, K. M. Lo, “Frozen-in electrical field in thermally poled fibers,” Opt. Fiber Technol. 5(2), 235–241 (1999). [CrossRef]
  7. J. Arentoft, M. Kristensen, K. Pedersen, S. I. Bozhevolnyi, P. Shi, “Poling of silica with silver-containing electrodes,” Electron. Lett. 36(19), 1635–1636 (2000). [CrossRef]
  8. W. T. Li, H. An, S. Fleming, “Second-order optical nonlinearity in thermally poled multilayer germanosilicate thin films,” Electron. Lett. 44(10), 639–641 (2008). [CrossRef]
  9. R. Kashyap, G. J. Veldhuis, D. C. Rogers, P. F. McKee, “Phase-matched second-harmonic generation by periodic poling of fused silica,” Appl. Phys. Lett. 64(11), 1332–1334 (1994). [CrossRef]
  10. S. Chao, H.-Y. Chen, Y.-H. Yang, Z.-W. Wang, C. T. Shih, H. Niu, “Quasi-phase-matched second-harmonic generation in Ge-ion implanted fused silica channel waveguide,” Opt. Express 13(18), 7091–7096 (2005), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-13-18-7091 . [CrossRef] [PubMed]
  11. A. Canagasabey, C. Corbari, A. V. Gladyshev, F. Liegeois, S. Guillemet, Y. Hernandez, M. V. Yashkov, A. Kosolapov, E. M. Dianov, M. Ibsen, P. G. Kazansky, “High-average-power second-harmonic generation from periodically poled silica fibers,” Opt. Lett. 34(16), 2483–2485 (2009). [CrossRef] [PubMed]
  12. M. Abe, T. Kitagawa, K. Hattori, A. Himeno, Y. Ohmori, “Electro-optic switch constructed with a poled silica-based waveguide on a Si substrate,” Electron. Lett. 32(10), 893–894 (1996). [CrossRef]
  13. A. C. Liu, M. J. F. Digonnet, G. S. Kino, “Electro-optic phase modulation in a silica channel waveguide,” Opt. Lett. 19(7), 466–468 (1994). [CrossRef] [PubMed]
  14. L. G. Helt, E. Y. Zhu, M. Liscidini, L. Qian, J. E. Sipe, “Proposal for in-fiber generation of telecom-band polarization-entangled photon pairs using a periodically poled fiber,” Opt. Lett. 34(14), 2138–2140 (2009). [CrossRef] [PubMed]
  15. P. G. Kazansky, P. St. J. Russell, “Thermally poled glass: frozen-in electric field or oriented dipoles?” Opt. Commun. 110(5-6), 611–614 (1994). [CrossRef]
  16. T. G. Alley, S. R. J. Brueck, R. A. Myers, “Space charge dynamics in thermally poled fused silica,” J. Non-Cryst. Solids 242(2-3), 165–176 (1998). [CrossRef]
  17. N. Myrén, H. Olsson, L. Norin, N. Sjödin, P. Helander, J. Svennebrink, W. Margulis, “Wide wedge-shaped depletion region in thermally poled fiber with alloy electrodes,” Opt. Express 12(25), 6093–6099 (2004), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-12-25-6093 . [CrossRef] [PubMed]
  18. W. Margulis, O. Tarasenko, N. Myrén, “Who needs a cathode? Creating a second-order nonlinearity by charging glass fiber with two anodes,” Opt. Express 17(18), 15534–15540 (2009), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-17-18-15534 . [CrossRef] [PubMed]
  19. W. Margulis, F. Laurell, B. Leschel, “Imaging the nonlinear grating in frequency-doubling fibres,” Nature 378(6558), 699–701 (1995). [CrossRef]
  20. H. An, S. Fleming, G. Cox, “Visualization of second-order nonlinear layer in thermally poled fused silica glass,” Appl. Phys. Lett. 85(24), 5819–5821 (2004). [CrossRef]
  21. D. Faccio, A. Busacca, D. W. J. Harwood, G. Bonfrate, V. Pruneri, P. G. Kazansky, “Effect of core-cladding interface on thermal poling of germano-silicate optical waveguides,” Opt. Commun. 196(1-6), 187–190 (2001). [CrossRef]
  22. H. An, S. Fleming, “Hindering effect of the core-cladding interface on the progression of the second-order nonlinearity layer in thermally poled optical fibers,” Appl. Phys. Lett. 87(10), 101108 (2005). [CrossRef]
  23. H. An, S. Fleming, “Creating large second-order nonlinearity in twin-hole optical fibre with core at the centre of the two holes,” Electron. Lett. 43(4), 206–207 (2007). [CrossRef]
  24. Y. Quiquempois, N. Godbout, S. Lacroix, “Model of charge migration during thermal poling in silica glasses: Evidence of a voltage threshold for the onset of a second-order nonlinearity,” Phys. Rev. A 65(4), 043816 (2002). [CrossRef]
  25. H. An, S. Fleming, “Second-order optical nonlinearity in thermally poled borosilicate glass,” Appl. Phys. Lett. 89(18), 181111 (2006). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited