OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 7 — Mar. 26, 2012
  • pp: 7445–7453

Porous SiO2/MgF2 broadband antireflection coatings for superstrate-type silicon-based tandem cells

Na-Fu Wang, Ting-Wei Kuo, Yu-Zen Tsai, Shi-Xiong Lin, Pin-Kun Hung, Chiung-Lin Lin, and Mau-Phon Houng  »View Author Affiliations

Optics Express, Vol. 20, Issue 7, pp. 7445-7453 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (2141 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The purpose of this study is to reduce the glass substrate reflectivity over a wide spectral range (400-1200nm) without having high reflectivity in the near-infrared region. After making porous SiO2/MgF2 double-layer antireflection (DLAR) thin film structure, the superstrate-type silicon-based tandem cells are added. In comparison to having only silicon-based tandem solar cells, the short-circuit current density has improved by 6.82% when porous SiO2/MgF2 DLAR thin film is applied to silicon-based tandem solar cells. This study has demonstrated that porous SiO2/MgF2 DLAR thin film structure provides antireflection properties over a broad spectral range (400-1200nm) without having high reflectivity at near-infrared wavelengths.

© 2012 OSA

OCIS Codes
(310.1210) Thin films : Antireflection coatings
(350.6050) Other areas of optics : Solar energy
(310.6845) Thin films : Thin film devices and applications

ToC Category:
Thin Films

Original Manuscript: December 23, 2011
Revised Manuscript: February 29, 2012
Manuscript Accepted: March 6, 2012
Published: March 19, 2012

Na-Fu Wang, Ting-Wei Kuo, Yu-Zen Tsai, Shi-Xiong Lin, Pin-Kun Hung, Chiung-Lin Lin, and Mau-Phon Houng, "Porous SiO2/MgF2 broadband antireflection coatings for superstrate-type silicon-based tandem cells," Opt. Express 20, 7445-7453 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. F. J. Haug, D. Rudmann, G. Bilger, H. Zogg, and A. N. Tiwari, “Comparison of structural and electrical properties of Cu(In,Ga)Se2 for substrate and superstrate solar cells,” Thin Solid Films403-404, 293–296 (2002). [CrossRef]
  2. T. Brammer, W. Reetz, N. Senoussaoui, O. Vetterl, O. Kluth, B. Rech, H. Stiebig, and H. Wagner, “Optical properties of silicon-based thin-film solar cells in substrate and superstrate configuration,” Sol. Energy Mater. Sol. Cells74(1-4), 469–478 (2002). [CrossRef]
  3. T. Brammer, W. Reetz, N. Senoussaoui, O. Vetterl, O. Kluth, B. Rech, H. Stiebig, and H. Wagner, “Optical properties of silicon-based thin-film solar cells in substrate and superstrate configuration,” Sol. Energy Mater. Sol. Cells74(1-4), 469–478 (2002). [CrossRef]
  4. K. Orgassa, U. Rau, Q. Nguyen, H. W. Schock, and J. H. Werner, “Role of the CdS buffer layer as an active optical element in Cu(In,Ga)Se2 thin-film solar cells,” Prog. Photovolt. Res. Appl.10(7), 457–463 (2002). [CrossRef]
  5. M. Tao, W. Zhou, H. Yang, and L. Chen, “Surface texturing by solution deposition for omnidirectional antireflection,” Appl. Phys. Lett.91(8), 081118 (2007). [CrossRef]
  6. K. M. Yeung, W. C. Luk, K. C. Tam, C. Y. Kwong, M. A. Tsai, H. C. Kuo, A. M. C. Ng, and A. B. Djurisic, “2-Step self-assembly method to fabricate broadband omnidirectional antireflection coating in large scale,” Sol. Energy Mater. Sol. Cells95(2), 699–703 (2011). [CrossRef]
  7. Y. Wang, L. Chen, H. Yang, Q. Guo, W. Zhou, and M. Tao, “Spherical antireflection coatings by large-area convective assembly of monolayer silica microspheres,” Sol. Energy Mater. Sol. Cells93(1), 85–91 (2009). [CrossRef]
  8. S. H. Hong, B. J. Bae, K. S. Han, E. J. Hong, H. Lee, and K. W. Choi, “Imprinted moth-eye antireflection patterns on glass substrate,” Electron. Mater. Lett.5(1), 39–42 (2009). [CrossRef]
  9. N. C. Linn, C. H. Sun, P. Jiang, and B. Jiang, “Self-assembled biomimetic antireflection coatings,” Appl. Phys. Lett.91(10), 101108 (2007). [CrossRef]
  10. P. Podsiadlo, L. Sui, Y. Elkasabi, P. Burgardt, J. Lee, A. Miryala, W. Kusumaatmaja, M. R. Carman, M. Shtein, J. Kieffer, J. Lahann, and N. A. Kotov, “Layer-by-layer assembled films of cellulose nanowires with antireflective properties,” Langmuir23(15), 7901–7906 (2007). [CrossRef] [PubMed]
  11. M. Chigane, Y. Hatanaka, and T. Shinagawa, “Enhanced antireflection properties of silica thin films via redox deposition and hot-water treatment,” Sol. Energy Mater. Sol. Cells94(6), 1055–1058 (2010). [CrossRef]
  12. A. Jonsson, A. Roos, and E. K. Jonson, “The effect on transparency and light scattering of dip coated antireflection coatings on window glass and electrochromic foil,” Sol. Energy Mater. Sol. Cells94(6), 992–997 (2010). [CrossRef]
  13. C. Ballif, J. Dicker, D. Borchert, and T. Hofmann, “Solar glass with industrial porous SiO2 antireflection coating: measurements of photovoltaic module properties improvement and modelling of yearly energy yield gain,” Sol. Energy Mater. Sol. Cells82(3), 331–344 (2004). [CrossRef]
  14. G. Wu, J. Wang, J. Shen, T. Yang, Q. Zhang, B. Zhou, Z. Deng, B. Fan, D. Zhou, and F. Zhang, “A novel route to control refractive index of sol-gel derived nano-porous silica films used as broadband antireflective coatings,” Mater. Sci. Eng. B78(2-3), 135–139 (2000). [CrossRef]
  15. Z. Liu, X. Zhang, T. Murakami, and A. Fujishima, “Sol-gel SiO2/TiO2 bilayer films with self-cleaning and antireflection properties,” Sol. Energy Mater. Sol. Cells92(11), 1434–1438 (2008). [CrossRef]
  16. H. Nagel, A. Metz, and R. Hezel, “Porous SiO2 flms prepared by remote plasma enhanced chemical vapour deposition - a novel antireflection coating technology for photovoltaic modules,” Sol. Energy Mater. Sol. Cells65(1-4), 71–77 (2001). [CrossRef]
  17. Y. Zheng, K. Kikuchi, M. Yamasaki, K. Sonoi, and K. Uehara, “Two-layer wideband antireflection coatings with an absorbing layer,” Appl. Opt.36(25), 6335–6338 (1997). [CrossRef] [PubMed]
  18. S. W. Kim, D. S. Bae, and H. Shin, “Zinc-embedded silica nanoparticle layer in a multilayer coating on a glass substrate achieves broadband antireflection and high transparency,” J. Appl. Phys.96(11), 6766–6771 (2004). [CrossRef]
  19. J. T. Cox, G. Hass, and A. Thelen, “Triple-layer antireflection coatings on glass for the visible and near infrared,” J. Opt. Soc. Am.52(9), 965–969 (1962). [CrossRef]
  20. M. H. Asghar, M. B. Khan, S. Naseem, and Z. A. Khan, “Design and preparation of antireflection films on glass substrate,” Turk. J. Phys.29, 43–53 (2005).
  21. U. Schulz, “Wideband antireflection coatings by combining interference multilayers with structured top layers,” Opt. Express17(11), 8704–8708 (2009). [CrossRef] [PubMed]
  22. Y. Ohtera, D. Kurniatan, and H. Yamada, “Antireflection coatings for multilayer-type photonic crystals,” Opt. Express18(12), 12249–12261 (2010). [CrossRef] [PubMed]
  23. W. H. Lowdermilk and D. Milam, “Graded-index antireflection surfaces for high-power laser applications,” Appl. Phys. Lett.36(11), 891–893 (1980). [CrossRef]
  24. Y. Y. Liou, C. C. Liu, C. C. Kuo, W. C. Liu, and C. C. Jaing, “Design of universal broadband visible antireflection coating for commonly used glass substrates,” Jpn. J. Appl. Phys.46(8A), 5143–5147 (2007). [CrossRef]
  25. O. Duyar and H. Z. Durusoy, “Design and preparation of antireflection and reflection optical coatings,” Turk. J. Phys.28, 139–144 (2004).
  26. H. Ishizawa, S. Niisaka, T. Murata, and A. Tanaka, “Preparation of MgF2-SiO2 thin films with a low refractive index by a solgel process,” Appl. Opt.47(13), C200–C205 (2008). [CrossRef] [PubMed]
  27. H. Nagel, A. G. Aberle, and R. Hezel, “Optimised antireflection coatings for planar silicon solar cells using remote PECVD silicon nitride and porous silicon dioxide,” Prog. Photovolt. Res. Appl.7(4), 245–260 (1999). [CrossRef]
  28. I. Pereyra and M. I. Alayo, “High quality low temperature DPECVD silicon dioxide,” J. Non-Cryst. Solids212(2-3), 225–231 (1997). [CrossRef]
  29. Y. Liu, W. Ren, L. Zhang, and X. Yao, “New method for making porous SiO2 thin films,” Thin Solid Films353(1-2), 124–128 (1999). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited