OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 7 — Mar. 26, 2012
  • pp: 7469–7479

Solitons in nonlocal nonlinear kerr media with exponential response function

Jian Jia and Ji Lin  »View Author Affiliations

Optics Express, Vol. 20, Issue 7, pp. 7469-7479 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (968 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



In this paper, we find some exact analytical solutions including bright soliton solution, dipole-mode soliton solution, double soliton solution and periodic solution when a slit laser beam propagates in Kerr-type nonlinear, nonlocal media with exponential response function. Furthermore, we address the energy flow is a monotonically growing function of d2 and the Hamiltonian decreases while the energy flow increases. And we also obtain an Airy-like soliton by numerical method.

© 2012 OSA

OCIS Codes
(190.0190) Nonlinear optics : Nonlinear optics
(190.6135) Nonlinear optics : Spatial solitons

ToC Category:
Nonlinear Optics

Original Manuscript: December 7, 2011
Revised Manuscript: February 16, 2012
Manuscript Accepted: February 27, 2012
Published: March 19, 2012

Jian Jia and Ji Lin, "Solitons in nonlocal nonlinear kerr media with exponential response function," Opt. Express 20, 7469-7479 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. Y. S. Kivshar and G. P. Agrawal, Optical Solitons: From Fibers to Photonic Crystals (Academic Press, London, 2003).
  2. M. Segev and G. I. Stegeman, “Self-Trapping of Optical Beams: Spatial solitons,” Phys. Today51(8), 42–45 (1998). [CrossRef]
  3. W. Królikowski, O. Bang, N. I. Nikolov, D. Neshev, J. Wyller, J. J. Rasmussen, and D. Edmundson, “Modulational instability, solitonsand beam propagation in spatially nonlocal nonlinear media,” J. Opt. B.6, 288–294 (2004). [CrossRef]
  4. M. Mitchell, M. Segev, and D. N. Christodoulides, “Observation of Multihump Multimode Solitons,” Phys. Rev. Lett.80, 4657–4600 (1998). [CrossRef]
  5. A. V. Mamaev, A. A. Zozulya, V. K. Mezentsev, D. Z. Anderson, and M. Saffman, “Bound dipole solitary solutions in anisotropic nonlocal self-focusing media,” Phys. Rev. A56, 1110–1113 (1997). [CrossRef]
  6. M. Peccianti, K. A. Brzdakiewicz, and G. Assanto, “Nonlocal spatial soliton interactions in nematic liquid crystals,” Opt. Lett.27, 1460–1462 (2002). [CrossRef]
  7. M. Peccianti, C. Conti, and G. Assanto, “Interplay between nonlocality and nonlinearity in nematic liquid crystals,” Opt. Lett.30, 415–417 (2005). [CrossRef] [PubMed]
  8. A. G. Litvak, V. A. Mironov, G. M. Fraiman, and A. D. Yunakovskii, “Direct measurement of the attenuation length of extensive air showers,” Sov. J. Plasma Phys.1, 31–33 (1975).
  9. J. P. Gordon, R. C. C. Leite, R. S. Moore, S. P. S. Porto, and J. R. Whinnery, “Long-transient effects in lasers with inserted liquid samples,” J. Appl. Phys.36, 3–8 (1965). [CrossRef]
  10. L. Santos, G. V. Shlyapnikov, P. Zoller, and M. Lewenstein, “Bose-Einstein condensation in trapped dipolar gases,” Phys. Rev. Lett.85, 1791–1794 (2000). [CrossRef] [PubMed]
  11. V. M. Perez-Garcia, V. V. Konotop, and J. J. García-Ripoll, “Dynamics of quasicollapse in nonlinear Schrödinger systems with nonlocal interactions,” Phys. Rev. E62, 4300–4308 (2000). [CrossRef]
  12. W. Królikowski, O. Bang, J. J. Rasmussen, and J. Wyller, “Modulational instability in nonlocal nonlinear Kerr media,” Phys. Rev. E64, 016612–016619 (2001). [CrossRef]
  13. M. Peccianti, C. Conti, and G. Assanto, “Optical modulational instability in a nonlocal medium,” Phys. Rev. E68, 025602–025605 (2003). [CrossRef]
  14. S. K. Turitsyn, “Spatial dispersion of nonlinearity and stability of multidimensional solitons,” Theor. Math. Phys.64, 797–801 (1985). [CrossRef]
  15. O. Bang, W. Królikowski, J. Wyller, and J. J. Rasmussen, “Collapse arrest and soliton stabilization in nonlocal nonlinear media,” Phys. Rev. E66, 046619–046623 (2002). [CrossRef]
  16. D. Neshev, G. McCarthy, and W. Królikowski, “Dipole-mode vector solitons in anisotropic nonlocal self-focusing media,” Opt. Lett.26, 1185–1187 (2001). [CrossRef]
  17. W. Królikowski, O. Bang, and J. Wyller, “Nonlocal incoherent solitons,” Phys. Rev. E70, 036617–036621 (2004). [CrossRef]
  18. J. I. Yakimenko, Y.A. Zaliznyak, and Y. Kivshar, “Stable vortex solitons in nonlocal self-focusing nonlinear media,” Phys. Rev. E71, 065603 (2005). [CrossRef]
  19. Y. Y. Lin, R. K. Lee, and B. A. Malomed, “Bragg solitons in nonlocal nonlinear media,” Phys. Rev. A80, 013838–013844 (2009). [CrossRef]
  20. N. I. Nikolov, D. Neshev, W. Królikowski, O. Bang, J. J. Rasmussen, and P. L. Christiansen, “Attraction of nonlocal dark optical solitons,” Opt. Lett.29, 286–288 (2004). [CrossRef] [PubMed]
  21. A. Dreischuh, D. N. Neshev, D. E. Petersen, O. Bang, and W. Królikowski, “Observation of attraction between dark solitons,” Phys. Rev. Lett.96, 043901 (2006). [CrossRef] [PubMed]
  22. S. Lopez-Aguayo, A. S. Desyatnikov, Y. S. Kivshar, S. Skupin, W. Królikowski, and O. Bang, “Stable rotating dipole solitons in nonlocal optical media,” Opt. Lett.31, 1100–1102 (2006). [CrossRef] [PubMed]
  23. N. I. Nikolov, D. Neshev, O. Bang, and W.Z. Królikowski, “Quadratic solitons as nonlocal solitons,” Phys. Rev. E68, 036614–036618 (2003). [CrossRef]
  24. P. V. Larsen, M. P. Sørensen, O. Bang, W. Z. Królikowski, and S. Trillo, “Nonlocal description of X waves in quadratic nonlinear materials,” Phys. Rev. E73, 036614–036623 (2006). [CrossRef]
  25. M. Bache, O. Bang, J. Moses, and F. W. Wise, “Nonlocal explanation of stationary and nonstationary regimes in cascaded soliton pulse compression,” Opt. Lett.32, 2490–2492 (2007). [CrossRef] [PubMed]
  26. M. Bache, O. Bang, W. Królikowski, J. Moses, and F. W. Wise, “Limits to compression with cascaded quadratic soliton compressors,” Opt. Express16, 3273–3287 (2008). [CrossRef] [PubMed]
  27. J. Wyller, W. Królikowski, O. Bang, and J. J. Rasmussen, “Generic features of modulational instability in nonlocal Kerr media,” Phys. Rev. E66, 066615–066627 (2002). [CrossRef]
  28. Z. Y. Xu, Y. V. Kartashov, and L. Torner, “Upper threshold for stability of multipole-mode solitons in nonlocal nonlinear media,” Opt. Lett.30, 3171–3173 (2005). [CrossRef] [PubMed]
  29. P. J. Olver, Applications of Lie Group to Differential Equations (Spinger,Berlin, 1986). [CrossRef]
  30. A. Hasegawa and F. Tappert, “Transmission of stationary nonlinear optical pulses in dispersive dielectric fibers. II. Normal dispersion,” Appl. Phys. Lett.23, 171–172 (1973). [CrossRef]
  31. W. Królikowski and O. Bang, “Solitons in nonlocal nonlinear media: Exact solutions,” Phys. Rev. E63, 016610–016615 (2000). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited