OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 7 — Mar. 26, 2012
  • pp: 7496–7506

A robust random number generator based on differential comparison of chaotic laser signals

Jianzhong Zhang, Yuncai Wang, Ming Liu, Lugang Xue, Pu Li, Anbang Wang, and Mingjiang Zhang  »View Author Affiliations


Optics Express, Vol. 20, Issue 7, pp. 7496-7506 (2012)
http://dx.doi.org/10.1364/OE.20.007496


View Full Text Article

Enhanced HTML    Acrobat PDF (2260 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We experimentally realize a robust real-time random number generator by differentially comparing the signal from a chaotic semiconductor laser and its delayed signal through a 1-bit analog-to-digital converter. The probability density distribution of the output chaotic signal based on the differential comparison method possesses an extremely small coefficient of Pearson’s median skewness (1.5 × 10−6), which can yield a balanced random sequence much easily than the previously reported method that compares the signal from the chaotic laser with a certain threshold value. Moveover, we experimently demonstrate that our method can stably generate good random numbers at rates of 1.44 Gbit/s with excellent immunity from external perturbations while the previously reported method fails.

© 2012 OSA

OCIS Codes
(060.4510) Fiber optics and optical communications : Optical communications
(140.1540) Lasers and laser optics : Chaos
(140.5960) Lasers and laser optics : Semiconductor lasers

ToC Category:
Lasers and Laser Optics

History
Original Manuscript: December 2, 2011
Revised Manuscript: February 2, 2012
Manuscript Accepted: March 5, 2012
Published: March 19, 2012

Citation
Jianzhong Zhang, Yuncai Wang, Ming Liu, Lugang Xue, Pu Li, Anbang Wang, and Mingjiang Zhang, "A robust random number generator based on differential comparison of chaotic laser signals," Opt. Express 20, 7496-7506 (2012)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-7-7496


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. Security requirements for cryptographic modules. FIPS 140–2 (2001). http://csrc.nist.gov/publications/fips/fips140-2/fips1402.pdf
  2. R. L. Pickholtz, D. L. Schilling, and L. B. Milstein, “Theory of spread-spectrum communications-a tutorial,” IEEE Trans. Commun.30(5), 855–884 (1982). [CrossRef]
  3. N. Metropolis and S. Ulam, “The Monte Carlo method,” J. Am. Stat. Assoc.44(247), 335–341 (1949). [CrossRef] [PubMed]
  4. M. Nazarathy, S. A. Newton, R. P. Giffard, D. S. Moberly, F. Sischka, W. R. Trutna, and S. Foster, “Real-time long range complementary correlation optical time domain reflectometer,” J. Lightwave Technol.7(1), 24–38 (1989). [CrossRef]
  5. C. Petrie and J. Connelly, “A noise-based IC random number generator for applications in cryptography,” IEEE Trans. Circ. Syst. I Fundam. Theory Appl.47(5), 615–621 (2000). [CrossRef]
  6. M. Bucci, L. Germani, R. Luzzi, A. Trifiletti, and M. Varanonuovo, “A high-speed oscillator-based truly random number source for cryptographic applications on a smart card IC,” IEEE Trans. Comput.52(4), 403–409 (2003). [CrossRef]
  7. T. Stojanovski and L. Kocarev, “Chaos-based random number generators-Part I: analysis,” IEEE Trans. Circ. Syst. I Fundam. Theory Appl.48(3), 281–288 (2001). [CrossRef]
  8. T. Stojanovski, J. Pihl, and L. Kocarev, “Chaos-based random number generators-Part II: Practical realization,” IEEE Trans. Circ. Syst. I Fundam. Theory Appl.48(3), 382–385 (2001). [CrossRef]
  9. A. Uchida, K. Amano, M. Inoue, K. Hirano, S. Naito, H. Someya, I. Oowada, T. Kurashige, M. Shiki, S. Yoshimori, K. Yoshimura, and P. Davis, “Fast physical random bit generation with chaotic semiconductor lasers,” Nat. Photonics2(12), 728–732 (2008). [CrossRef]
  10. I. Reidler, Y. Aviad, M. Rosenbluh, and I. Kanter, “Ultrahigh-speed random number generation based on a chaotic semiconductor laser,” Phys. Rev. Lett.103(2), 024102 (2009). [CrossRef] [PubMed]
  11. A. Argyris, S. Deligiannidis, E. Pikasis, A. Bogris, and D. Syvridis, “Implementation of 140 Gb/s true random bit generator based on a chaotic photonic integrated circuit,” Opt. Express18(18), 18763–18768 (2010). [CrossRef] [PubMed]
  12. I. Kanter, Y. Aviad, I. Reidler, E. Cohen, and M. Rosenbluh, “An optical ultrafast random bit generator,” Nat. Photonics4(1), 58–61 (2010). [CrossRef]
  13. K. Hirano, T. Yamazaki, S. Morikatsu, H. Okumura, H. Aida, A. Uchida, S. Yoshimori, K. Yoshimura, T. Harayama, and P. Davis, “Fast random bit generation with bandwidth-enhanced chaos in semiconductor lasers,” Opt. Express18(6), 5512–5524 (2010). [CrossRef] [PubMed]
  14. P. Li, Y. C. Wang, and J. Z. Zhang, “All-optical fast random number generator,” Opt. Express18(19), 20360–20369 (2010). [CrossRef] [PubMed]
  15. S. Sunada, T. Harayama, K. Arai, K. Yoshimura, P. Davis, K. Tsuzuki, and A. Uchida, “Chaos laser chips with delayed optical feedback using a passive ring waveguide,” Opt. Express19(7), 5713–5724 (2011). [CrossRef] [PubMed]
  16. T. Harayama, S. Sunada, K. Yoshimura, P. Davis, K. Tsuzuki, and A. Uchida, “Fast nondeterministic random-bit generation using on-chip chaos lasers,” Phys. Rev. A83(3), 031803 (2011). [CrossRef]
  17. A. B. Wang, Y. C. Wang, and H. C. He, “Enhancing the bandwidth of the optical chaotic signal generated by a semiconductor laser with optical feedback,” IEEE Photon. Technol. Lett.20(19), 1633–1635 (2008). [CrossRef]
  18. C. R. S. Williams, J. C. Salevan, X. W. Li, R. Roy, and T. E. Murphy, “Fast physical random number generator using amplified spontaneous emission,” Opt. Express18(23), 23584–23597 (2010). [CrossRef] [PubMed]
  19. Pearson's skewness coefficients. http://en.wikipedia.org/wiki/Skewness#cite_note-4 .
  20. A. Rukhin, J. Soto, J. Nechvatal, M. Smid, E. Barker, S. Leigh, M. Levenson, M. Vangel, D. Banks, A. Heckert, J. Dray, and S. Vo, “A statistical test suite for random and pseudorandom number generators for cryptographic applications,” http://csrc.nist.gov/groups/ST/toolkit/rng/documentation_software.html
  21. G. Marsaglia, “Diehard: A battery of tests of randomness,” http://www.stat.fsu.edu/pub/diehard/

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited