OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 7 — Mar. 26, 2012
  • pp: 7516–7525

Selective-mode optical nanofilters based on plasmonic complementary split-ring resonators

Iman Zand, Amirreza Mahigir, Tavakol Pakizeh, and Mohammad S. Abrishamian  »View Author Affiliations

Optics Express, Vol. 20, Issue 7, pp. 7516-7525 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (1514 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A nanoplasmonic optical filtering technique based on a complementary split-ring resonator structure is proposed. The basic and modal properties of the square-nanoring are studied using the group theory. Degeneracy and non-degeneracy of the possible TM odd- and even-modes are characterized based on the symmetry elements of the ring structure. Distinctively, the proposed technique allows selecting and exciting the proper plasmonic modes of the nanoring in the side-coupled arrangement. It is found that the non-integer modes can be excited due to the presence of a metallic nano-wall. These modes are highly sensitive to the nano-wall dimensions, in contrast to the regular integer modes. Moreover, the transmission-line theory is used to derive the resonance condition of the modes. The results show the optical transmission spectrum of the investigated filter can be efficiently modified and tuned either by manipulation of the position or by variation of the width of the employed nano-wall inside the ring. The numerical results support the theoretical analysis.

© 2012 OSA

OCIS Codes
(130.3120) Integrated optics : Integrated optics devices
(230.7400) Optical devices : Waveguides, slab
(240.6680) Optics at surfaces : Surface plasmons
(250.5300) Optoelectronics : Photonic integrated circuits
(130.7408) Integrated optics : Wavelength filtering devices

ToC Category:
Integrated Optics

Original Manuscript: January 4, 2012
Revised Manuscript: March 4, 2012
Manuscript Accepted: March 4, 2012
Published: March 19, 2012

Iman Zand, Amirreza Mahigir, Tavakol Pakizeh, and Mohammad S. Abrishamian, "Selective-mode optical nanofilters based on plasmonic complementary split-ring resonators," Opt. Express 20, 7516-7525 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. R. Zia, J. A. Schuller, A. Chandran, M. L. Brongersma, “Plasmonics: the next chip-scale technology,” Mater. Today 9(7-8), 20–27 (2006). [CrossRef]
  2. E. Ozbay, “Plasmonics: merging photonics and electronics at nanoscale dimensions,” Science 311(5758), 189–193 (2006). [CrossRef] [PubMed]
  3. G. Veronis, S. Fan, “Modes of subwavelength plasmonic slot waveguides,” Opt. Express 16, 2129–2140 (2008). [CrossRef] [PubMed]
  4. W. Cai, W. Shin, S. Fan, M. L. Brongersma, “Elements for plasmonic nanocircuits with three-dimensional slot waveguides,” Adv. Mater. (Deerfield Beach Fla.) 22(45), 5120–5124 (2010). [CrossRef] [PubMed]
  5. D. F. P. Pile, T. Ogawa, D. K. Gramotnev, Y. Matsuzaki, K. C. Vernon, K. Yamaguchi, T. Okamoto, M. Haraguchi, M. Fukui, “Two-dimensionally localized modes of a nanoscale gap plasmon waveguide,” Appl. Phys. Lett. 87(26), 261114 (2005). [CrossRef]
  6. G. Veronis, S. Fan, “Bends and splitters in metal-dielectric-metal subwavelength plasmonic waveguides,” Appl. Phys. Lett. 87(13), 131102 (2005). [CrossRef]
  7. J. A. Dionne, L. A. Sweatlock, H. A. Atwater, A. Polman, “Plasmon slot waveguides: towards chip-scale propagation with subwavelength-scale localization,” Phys. Rev. B 73(3), 035407 (2006). [CrossRef]
  8. H. Gao, H. Shi, C. Wang, C. Du, X. Luo, Q. Deng, Y. Lv, X. Lin, H. Yao, “Surface plasmon polariton propagation and combination in Y-shaped metallic channels,” Opt. Express 13(26), 10795–10800 (2005). [CrossRef] [PubMed]
  9. S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J. Y. Laluet, T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature 440(7083), 508–511 (2006). [CrossRef] [PubMed]
  10. H. Zhao, X. Guang, J. Huang, “Novel optical directional coupler based on surface plasmon polaritons,” Physica E 40(10), 3025–3029 (2008). [CrossRef]
  11. Y. Matsuzaki, T. Okamoto, M. Haraguchi, M. Fukui, M. Nakagaki, “Characteristics of gap plasmon waveguide with stub structures,” Opt. Express 16(21), 16314–16325 (2008). [CrossRef] [PubMed]
  12. X. S. Lin, X. G. Huang, “Tooth-shaped plasmonic waveguide filters with nanometeric sizes,” Opt. Lett. 33(23), 2874–2876 (2008). [CrossRef] [PubMed]
  13. J. Tao, X. G. Huang, X. Lin, Q. Zhang, X. Jin, “A narrow-band subwavelength plasmonic waveguide filter with asymmetrical multiple-teeth-shaped structure,” Opt. Express 17(16), 13989–13994 (2009). [CrossRef] [PubMed]
  14. J. Tao, X. G. Huang, J. H. Zhu, “A wavelength demultiplexing structure based on metal-dielectric-metal plasmonic nano-capillary resonators,” Opt. Express 18(11), 11111–11116 (2010). [CrossRef] [PubMed]
  15. A. Noual, A. Akjouj, Y. Pennec, J.-N. Gillet, B. Djafari-Rouhani, “Modeling of two-dimensional nanoscale Y-bent plasmonic waveguides with cavities for demultiplexing of the telecommunication wavelengths,” New J. Phys. 11(10), 103020 (2009). [CrossRef]
  16. X. Mei, X. Huang, J. Tao, J. Zhu, Y. Zhu, X. Jin, “A wavelength demultiplexing structure based on plasmonic MDM side-coupled cavities,” J. Opt. Soc. Am. B 27(12), 2707–2713 (2010). [CrossRef]
  17. G. Wang, H. Lu, X. Liu, D. Mao, L. Duan, “Tunable multi-channel wavelength demultiplexer based on MIM plasmonic nanodisk resonators at telecommunication regime,” Opt. Express 19(4), 3513–3518 (2011). [CrossRef] [PubMed]
  18. H. Lu, X. M. Liu, D. Mao, L. R. Wang, Y. K. Gong, “Tunable band-pass plasmonic waveguide filters with nanodisk resonators,” Opt. Express 18(17), 17922–17927 (2010). [CrossRef] [PubMed]
  19. F. Hu, H. Yi, Z. Zhou, “Wavelength demultiplexing structure based on arrayed plasmonic slot cavities,” Opt. Lett. 36(8), 1500–1502 (2011). [CrossRef] [PubMed]
  20. S. S. Xiao, L. Liu, M. Qiu, “Resonator channel drop filters in a plasmon-polaritons metal,” Opt. Express 14(7), 2932–2937 (2006). [CrossRef] [PubMed]
  21. A. Hosseini, Y. Massoud, “Nanoscale surface plasmon based resonator using rectangular geometry,” Appl. Phys. Lett. 90(18), 181102 (2007). [CrossRef]
  22. T. Holmgaard, Z. Chen, S. I. Bozhevolnyi, L. Markey, A. Dereux, “Dielectric-loaded plasmonic waveguide-ring resonators,” Opt. Express 17(4), 2968–2975 (2009). [CrossRef] [PubMed]
  23. Z. Han, V. Van, W. N. Herman, P. T. Ho, “Aperture-coupled MIM plasmonic ring resonators with sub-diffraction modal volumes,” Opt. Express 17(15), 12678–12684 (2009). [CrossRef] [PubMed]
  24. T. B. Wang, X. W. Wen, C. P. Yin, H. Z. Wang, “The transmission characteristics of surface plasmon polaritons in ring resonator,” Opt. Express 17(26), 24096–24101 (2009). [CrossRef] [PubMed]
  25. B. Yun, G. Hu, Y. Cui, “Theoretical analysis of a nanoscale plasmonic filter based on a rectangular metal-insulator-metal waveguide,” J. Phys. D Appl. Phys. 43(38), 385102 (2010). [CrossRef]
  26. J. Liu, G. Fang, H. Zhao, Y. Zhang, S. Liu, “Plasmon flow control at gap waveguide junctions using square ring resonators,” J. Phys. D Appl. Phys. 43(5), 055103 (2010). [CrossRef]
  27. T. D. Corrigan, P. W. Kolb, A. B. Sushkov, H. D. Drew, D. C. Schmadel, R. J. Phaneuf, “Optical plasmonic resonances in split-ring resonator structures: an improved LC model,” Opt. Express 16(24), 19850–19864 (2008). [CrossRef] [PubMed]
  28. C. Rockstuhl, T. Zentgraf, T. P. Meyrath, H. Giessen, F. Lederer, “Resonances in complementary metamaterials and nanoapertures,” Opt. Express 16(3), 2080–2090 (2008). [CrossRef] [PubMed]
  29. M. Navarro-Cía, M. Aznabet, M. Beruete, F. Falcone, O. El Mrabet, M. Sorolla, M. Essaaidi, “Stacked complementary metasurfaces for ultraslow microwave metamaterials,” Appl. Phys. Lett. 96(16), 164103 (2010). [CrossRef]
  30. Y. Dong, T. Itoh, “Substrate Integrated Waveguide Loaded by Complementary Split-Ring Resonators for Miniaturized Diplexer Design,” IEEE Microw.Wireless Compon. Lett. 21(1), 10–12 (2011). [CrossRef]
  31. G. Kumar, A. Cui, S. Pandey, A. Nahata, “Planar terahertz waveguides based on complementary split ring resonators,” Opt. Express 19(2), 1072–1080 (2011). [CrossRef] [PubMed]
  32. S. F. A. Kettle, Symmetry and Structure: Readable Group Theory for Chemists, 3rd ed. (Wiley, 2007).
  33. A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method (Artech House, Norwood, MA, 2005).
  34. Z. H. Han, E. Forsberg, S. He, “Surface plasmon Bragg gratings formed in metal-insulator-metal waveguides,” IEEE Photon. Technol. Lett. 19(2), 91–93 (2007). [CrossRef]
  35. R. F. Harrington, Time-Harmonic Electromagnetic Fields (IEEE Press, 2001).
  36. D. M. Pozar, Microwave Engineering, 2nd ed. (Wiley, New York, 1998).
  37. A. Alu, M. Young, N. Engheta, “Design of nanofilters for optical nanocircuits,” Phys. Rev. B 77(14), 144107 (2008). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited