OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 7 — Mar. 26, 2012
  • pp: 7555–7563

Adaptive synthetic-aperture focusing technique for microvasculature imaging using photoacoustic microscopy

Zilin Deng, Xiaoquan Yang, Hui Gong, and Qingming Luo  »View Author Affiliations


Optics Express, Vol. 20, Issue 7, pp. 7555-7563 (2012)
http://dx.doi.org/10.1364/OE.20.007555


View Full Text Article

Enhanced HTML    Acrobat PDF (2674 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

To improve the lateral resolution of the blood vessels along arbitrary direction out of focus in photoacoustic microscopy (PAM), we propose an adaptive synthetic-aperture focusing technique (ASAFT) for microvasculature imaging which can be automatically applied to each branch of blood vessels, based on our previous two-dimensional (2D) SAFT. The ASAFT is validated both in the phantom study and in vivo imaging. The results demonstrate that ASAFT can provide images of blood vessels with better lateral resolution both at different depths and along various directions compared with one-dimensional and 2D SAFT.

© 2012 OSA

OCIS Codes
(170.3880) Medical optics and biotechnology : Medical and biological imaging
(170.5120) Medical optics and biotechnology : Photoacoustic imaging

ToC Category:
Medical Optics and Biotechnology

History
Original Manuscript: January 23, 2012
Revised Manuscript: March 15, 2012
Manuscript Accepted: March 15, 2012
Published: March 19, 2012

Virtual Issues
Vol. 7, Iss. 5 Virtual Journal for Biomedical Optics

Citation
Zilin Deng, Xiaoquan Yang, Hui Gong, and Qingming Luo, "Adaptive synthetic-aperture focusing technique for microvasculature imaging using photoacoustic microscopy," Opt. Express 20, 7555-7563 (2012)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-7-7555


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. S. Hu and L. V. Wang, “Photoacoustic imaging and characterization of the microvasculature,” J. Biomed. Opt.15(1), 011101 (2010). [CrossRef] [PubMed]
  2. J.k.-J. Li, Dynamics of the Vascular System (World Scientific, Singapore, 2004).
  3. J. P. Culver, T. Durduran, D. Furuya, C. Cheung, J. H. Greenberg, and A. G. Yodh, “Diffuse optical tomography of cerebral blood flow, oxygenation, and metabolism in rat during focal ischemia,” J. Cereb. Blood Flow Metab.23(8), 911–924 (2003). [CrossRef] [PubMed]
  4. A. M. Mendonca and A. Campilho, ““Segmentation of retinal blood vessels by combining the detection of centerlines and morphological reconstruction,” IEEE,” IEEE Trans. Med. Imag.25(9), 1200–1213 (2006). [CrossRef]
  5. A. Livnat, M. Tolmasov, E. B. Michaely, and A. Mayevsky, “Real-time monitoring of mitochondrial function and cerebral blood flow following focal ischemia in rats,” J. Innovative Opt. Health Sci.1(01), 63–69 (2008). [CrossRef]
  6. A. Durukan and T. Tatlisumak, “Acute ischemic stroke: overview of major experimental rodent models, pathophysiology, and therapy of focal cerebral ischemia,” Pharmacol. Biochem. Behav.87(1), 179–197 (2007). [CrossRef] [PubMed]
  7. J. R. Less, T. C. Skalak, E. M. Sevick, and R. K. Jain, “Microvascular architecture in a mammary carcinoma: branching patterns and vessel dimensions,” Cancer Res.51(1), 265–273 (1991). [PubMed]
  8. Y. Q. Lao, D. Xing, S. H. Yang, and L. Z. Xiang, “Noninvasive photoacoustic imaging of the developing vasculature during early tumor growth,” Phys. Med. Biol.53(15), 4203–4212 (2008). [CrossRef] [PubMed]
  9. E. Zcharia, R. Zilka, A. Yaar, O. Yacoby-Zeevi, A. Zetser, S. Metzger, R. Sarid, A. Naggi, B. Casu, N. Ilan, I. Vlodavsky, and R. Abramovitch, “Heparanase accelerates wound angiogenesis and wound healing in mouse and rat models,” FASEB J.19(2), 211–221 (2005). [CrossRef] [PubMed]
  10. A. A. Tandara and T. A. Mustoe, “Oxygen in wound healing--more than a nutrient,” World J. Surg.28(3), 294–300 (2004). [CrossRef] [PubMed]
  11. C. Aalkjaer and H. Nilsson, “Vasomotion: cellular background for the oscillator and for the synchronization of smooth muscle cells,” Br. J. Pharmacol.144(5), 605–616 (2005). [CrossRef] [PubMed]
  12. R. Wild, S. Ramakrishnan, J. Sedgewick, and A. W. Griffioen, “Quantitative assessment of angiogenesis and tumor vessel architecture by computer-assisted digital image analysis: effects of VEGF-toxin conjugate on tumor microvessel density,” Microvasc. Res.59(3), 368–376 (2000). [CrossRef] [PubMed]
  13. S. Hu, K. Maslov, and L. V. Wang, “Noninvasive label-free imaging of microhemodynamics by optical-resolution photoacoustic microscopy,” Opt. Express17(9), 7688–7693 (2009). [CrossRef] [PubMed]
  14. U. Hoffmann, M. Ferencik, R. C. Cury, and A. J. Pena, “Coronary CT angiography,” J. Nucl. Med.47(5), 797–806 (2006). [PubMed]
  15. M. Neeman, “Functional and molecular MR imaging of angiogenesis: seeing the target, seeing it work,” J. Cell. Biochem. Suppl.87(S39), 11–17 (2002). [CrossRef] [PubMed]
  16. J. H. Rudd, K. S. Myers, S. Bansilal, J. Machac, C. A. Pinto, C. Tong, A. Rafique, R. Hargeaves, M. Farkouh, V. Fuster, and Z. A. Fayad, “Atherosclerosis inflammation imaging with 18F-FDG PET: carotid, iliac, and femoral uptake reproducibility, quantification methods, and recommendations,” J. Nucl. Med.49(6), 871–878 (2008). [CrossRef] [PubMed]
  17. U. Schminke, L. Motsch, B. Griewing, M. Gaull, and C. Kessler, “Three-dimensional power-mode ultrasound for quantification of the progression of carotid artery atherosclerosis,” J. Neurol.247(2), 106–111 (2000). [CrossRef] [PubMed]
  18. K. Maslov, H. F. Zhang, and L. V. Wang, “Photoacoustic generation of focused quasi-unipolar pressure pulses,” J Innov Opt Health Sci3(4), 247–253 (2010). [CrossRef] [PubMed]
  19. H. F. Zhang, K. Maslov, G. Stoica, and L. V. Wang, “Functional photoacoustic microscopy for high-resolution and noninvasive in vivo imaging,” Nat. Biotechnol.24(7), 848–851 (2006). [CrossRef] [PubMed]
  20. M. L. Li, J. C. Wang, J. A. Schwartz, K. L. Gill-Sharp, G. Stoica, and L. V. Wang, “In-vivo photoacoustic microscopy of nanoshell extravasation from solid tumor vasculature,” J. Biomed. Opt.14(1), 010507 (2009). [CrossRef] [PubMed]
  21. D. Pan, M. Pramanik, A. Senpan, J. S. Allen, H. Y. Zhang, S. A. Wickline, L. V. Wang, and G. M. Lanza, “Molecular photoacoustic imaging of angiogenesis with integrin-targeted gold nanobeacons,” FASEB J.25(3), 875–882 (2011). [CrossRef] [PubMed]
  22. H. F. Zhang, K. Maslov, M. L. Li, G. Stoica, and L. V. Wang, “In vivo volumetric imaging of subcutaneous microvasculature by photoacoustic microscopy,” Opt. Express14(20), 9317–9323 (2006). [CrossRef] [PubMed]
  23. H. F. Zhang, K. Maslov, M. Sivaramakrishnan, G. Stoica, and L. H. V. Wang, “Imaging of hemoglobin oxygen saturation variations in single vessels in vivo using photoacoustic microscopy,” Appl. Phys. Lett.90(5), 053901 (2007). [CrossRef]
  24. V. Tsytsarev, S. Hu, J. J. Yao, K. Maslov, D. L. Barbour, and L. V. Wang, “Photoacoustic microscopy of microvascular responses to cortical electrical stimulation,” J. Biomed. Opt.16(7), 076002 (2011). [CrossRef] [PubMed]
  25. X. Q. Yang, X. Cai, K. Maslov, L. H. Wang, and Q. M. Luo, “High-resolution photoacoustic microscope for rat brain imaging in vivo,” Chin. Opt. Lett.8(6), 609–611 (2010). [CrossRef]
  26. L. V. Wang, “Multiscale photoacoustic microscopy and computed tomography,” Nat. Photonics3(9), 503–509 (2009). [CrossRef] [PubMed]
  27. M. L. Li, H. F. Zhang, K. Maslov, G. Stoica, and L. V. Wang, “Improved in vivo photoacoustic microscopy based on a virtual-detector concept,” Opt. Lett.31(4), 474–476 (2006). [CrossRef] [PubMed]
  28. H. F. Zhang, K. Maslov, and L. V. Wang, “Automatic algorithm for skin profile detection in photoacoustic microscopy,” J. Biomed. Opt.14(2), 024050 (2009). [CrossRef] [PubMed]
  29. C. K. Liao, M. L. Li, and P. C. Li, “Optoacoustic imaging with synthetic aperture focusing and coherence weighting,” Opt. Lett.29(21), 2506–2508 (2004). [CrossRef] [PubMed]
  30. S. Park, A. B. Karpiouk, S. R. Aglyamov, and S. Y. Emelianov, “Adaptive beamforming for photoacoustic imaging,” Opt. Lett.33(12), 1291–1293 (2008). [CrossRef] [PubMed]
  31. Z. L. Deng, X. Q. Yang, H. Gong, and Q. M. Luo, “Two-dimensional synthetic-aperture focusing technique in photoacoustic microscopy,” J. Appl. Phys.109(10), 104701 (2011). [CrossRef]
  32. C. G. A. Hoelen and F. F. M. de Mul, “A new theoretical approach to photoacoustic signal generation,” J. Acoust. Soc. Am.106(2), 695–706 (1999). [CrossRef]
  33. C. K. Liao, M. L. Li, and P. C. Li, “Optoacoustic imaging with improved synthetic focusing,” Proc. SPIE5967, 255–262 (2005). [CrossRef]
  34. A. F. Frangi, W. J. Niessen, K. L. Vincken, and M. A. Viergever, “Multiscale vessel enhancement filtering, ” in Proceedings of Medical Image Computing & Computer Assisted Intervention (MICCAI), W. Wells, A. Colchester, and S. Delp, eds., 1496 of Lecture Notes in Computer Science, (Springer- Verlag, Berlin, 1998), 130–137.
  35. P. F. Hemler, E. S. McCreedy, and M. J. McAuliffe, “Performance evaluation of multiscale vessel enhancement filtering,” Proc. SPIE5370, 1785–1794 (2004). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited