OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 7 — Mar. 26, 2012
  • pp: 7580–7589

Ultra-broad and sharp-transition bandpass terahertz filters by hybridizing multiple resonances mode in monolithic metamaterials

Ting-Tso Yeh, Simone Genovesi, Agostino Monorchio, Enrico Prati, Filippo Costa, Tsung-Yu Huang, and Ta-Jen Yen  »View Author Affiliations

Optics Express, Vol. 20, Issue 7, pp. 7580-7589 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (16663 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We present three monolithic metamaterial-based THz bandpass filters, the skewed circular slot rings, meandered slots and Jerusalem cross slots, to fit in the THz gap. These THz bandpass filters are comprised of a metal-dielectric-metal (MDM) structure that supports multiple resonances of electric dipole, magnetic dipole, and standing-wave-like modes. By exciting and further hybridizing these individual resonance modes, we demonstrate excellent performance of broad bandwidth and sharp band-edge transition beyond conventional bandpass filters. By further employing our ad hoc Genetic Algorithm (GA) and Periodic Method of Moments (PMM) to optimize our designs, we achieve an ultra-broad 3dB fractional bandwidth and sharp band-edge transition up to 82.2% and 58.3 dB/octave, respectively, benefiting the practical applications such as material recognition in security systems, imaging, and absorbers.

© 2012 OSA

OCIS Codes
(230.4000) Optical devices : Microstructure fabrication
(160.3918) Materials : Metamaterials
(230.7408) Optical devices : Wavelength filtering devices

ToC Category:

Original Manuscript: January 27, 2012
Revised Manuscript: March 1, 2012
Manuscript Accepted: March 13, 2012
Published: March 19, 2012

Ting-Tso Yeh, Simone Genovesi, Agostino Monorchio, Enrico Prati, Filippo Costa, Tsung-Yu Huang, and Ta-Jen Yen, "Ultra-broad and sharp-transition bandpass terahertz filters by hybridizing multiple resonances mode in monolithic metamaterials," Opt. Express 20, 7580-7589 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. N. Seddon, T. Bearpark, “Observation of the inverse Doppler effect,” Science 302(5650), 1537–1540 (2003). [CrossRef] [PubMed]
  2. J. Lu, T. M. Grzegorczyk, Y. Zhang, J. Pacheco, B. I. Wu, J. A. Kong, M. Chen, “Cerenkov radiation in materials with negative permittivity and permeability,” Opt. Express 11(7), 723–734 (2003). [CrossRef] [PubMed]
  3. R. A. Shelby, D. R. Smith, S. Schultz, “Experimental verification of a negative index of refraction,” Science 292(5514), 77–79 (2001). [CrossRef] [PubMed]
  4. W. S. Cai, U. K. Chettiar, A. V. Kildishev, V. M. Shalaev, “Optical cloaking with metamaterials,” Nat. Photonics 1(4), 224–227 (2007). [CrossRef]
  5. X. Zhang, Z. W. Liu, “Superlenses to overcome the diffraction limit,” Nat. Mater. 7(6), 435–441 (2008). [CrossRef] [PubMed]
  6. H. Wakatsuchi, S. Greedy, C. Christopoulos, J. Paul, “Customised broadband metamaterial absorbers for arbitrary polarisation,” Opt. Express 18(21), 22187–22198 (2010). [CrossRef] [PubMed]
  7. K. L. Tsakmakidis, A. D. Boardman, O. Hess, “‘Trapped rainbow’ storage of light in metamaterials,” Nature 450(7168), 397–401 (2007). [CrossRef] [PubMed]
  8. H. T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, R. D. Averitt, “Active terahertz metamaterial devices,” Nature 444(7119), 597–600 (2006). [CrossRef] [PubMed]
  9. B. Ferguson, X. C. Zhang, “Materials for terahertz science and technology,” Nat. Mater. 1(1), 26–33 (2002). [CrossRef] [PubMed]
  10. M. R. Leahy-Hoppa, M. J. Fitch, X. Zheng, L. M. Hayden, R. Osiander, “Wideband terahertz spectroscopy of explosives,” Chem. Phys. Lett. 434(4-6), 227–230 (2007). [CrossRef]
  11. J. F. Federici, B. Schulkin, F. Huang, D. Gary, R. Barat, F. Oliveira, D. Zimdars, “THz imaging and sensing for security applications—explosives, weapons and drugs,” Semicond. Sci. Technol. 20(7), S266–S280 (2005). [CrossRef]
  12. D. M. Mittleman, M. Gupta, R. Neelamani, R. G. Baraniuk, J. V. Rudd, M. Koch, ““Recent advances in terahertz imaging,” Appl. Phys. B-Lasers Opt. 68(6), 1085–1094 (1999). [CrossRef]
  13. B. B. Hu, M. C. Nuss, “Imaging with terahertz waves,” Opt. Lett. 20(16), 1716–1718 (1995). [CrossRef] [PubMed]
  14. F. Miyamaru, Y. Saito, M. Takeda, B. Hou, L. Liu, W. Wen, P. Sheng, “Terahertz electric response of fractal metamaterial structures,” Phys. Rev. B 77(4), 045124 (2008). [CrossRef]
  15. D. R. Chowdhury, R. Singh, M. Reiten, H. T. Chen, A. J. Taylor, J. F. O’Hara, A. K. Azad, “A broadband planar terahertz metamaterial with nested structure,” Opt. Express 19(17), 15817–15823 (2011). [CrossRef] [PubMed]
  16. N. R. Han, Z. C. Chen, C. S. Lim, B. Ng, M. H. Hong, “Broadband multi-layer terahertz metamaterials fabrication and characterization on flexible substrates,” Opt. Express 19(8), 6990–6998 (2011). [CrossRef] [PubMed]
  17. M. Z. Lu, W. Z. Li, E. R. Brown, “Second-order bandpass terahertz filter achieved by multilayer complementary metamaterial structures,” Opt. Lett. 36(7), 1071–1073 (2011). [CrossRef] [PubMed]
  18. M. Al-Joumayly, N. Behdad, “A New Technique for Design of Low-Profile, Second-Order, Bandpass Frequency Selective Surfaces,” IEEE Trans. Antenn. Propag. 57(2), 452–459 (2009). [CrossRef]
  19. S. Genovesi, T. Yen, A. Monorchio, E. Prati, Y. Chiang, and F. Costa, “Optimization of wide-bandpass filter within the Terahertz frequency regime,” in Proceedings of XXXth URSI General Assembly and Scientific Symposium, (2011), pp. 1–4.
  20. D. S. Weile, E. Michielssen, “Genetic algorithm optimization applied to electromagnetics: A review,” IEEE Trans. Antenn. Propag. 45(3), 343–353 (1997). [CrossRef]
  21. T. K. Wu, Frequency selective surface and grid array, (John Wiley & Sons, 1995).
  22. G. Dolling, C. Enkrich, M. Wegener, J. F. Zhou, C. M. Soukoulis, S. Linden, “Cut-wire pairs and plate pairs as magnetic atoms for optical metamaterials,” Opt. Lett. 30(23), 3198–3200 (2005). [CrossRef] [PubMed]
  23. J. F. Zhou, E. N. Economon, T. Koschny, C. M. Soukoulis, “Unifying approach to left-handed material design,” Opt. Lett. 31(24), 3620–3622 (2006). [CrossRef] [PubMed]
  24. S. T. Chase, R. D. Joseph, “Resonant array bandpass filters for the far infrared,” Appl. Opt. 22(11), 1775–1779 (1983). [CrossRef] [PubMed]
  25. S. Zhang, W. J. Fan, K. J. Malloy, S. R. J. Brueck, N. C. Panoiu, R. M. Osgood, “Near-infrared double negative metamaterials,” Opt. Express 13(13), 4922–4930 (2005). [CrossRef] [PubMed]
  26. V. A. Fedotov, M. Rose, S. L. Prosvirnin, N. Papasimakis, N. I. Zheludev, “Sharp trapped-mode resonances in planar metamaterials with a broken structural symmetry,” Phys. Rev. Lett. 99(14), 147401 (2007). [CrossRef] [PubMed]
  27. N. Papasimakis, V. A. Fedotov, N. I. Zheludev, S. L. Prosvirnin, “Metamaterial analog of electromagnetically induced transparency,” Phys. Rev. Lett. 101(25), 253903 (2008). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited