OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 7 — Mar. 26, 2012
  • pp: 7590–7601

Real-time measurements of atmospheric CO using a continuous-wave room temperature quantum cascade laser based spectrometer

Jingsong Li, Uwe Parchatka, Rainer Königstedt, and Horst Fischer  »View Author Affiliations


Optics Express, Vol. 20, Issue 7, pp. 7590-7601 (2012)
http://dx.doi.org/10.1364/OE.20.007590


View Full Text Article

Enhanced HTML    Acrobat PDF (1669 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A compact, mobile mid-infrared laser spectrometer based on a thermoelectrically (TE) cooled continuous-wave room temperature quantum cascade laser and TE-cooled detectors has been newly developed to demonstrate the applicability of high sensitivity and high precision measurements of atmospheric CO. Performance of the instrument was examined with periodic measurements of reference sample and ambient air at 1 Hz sampling rate and a 1-hourly calibration cycle. The typical precision evaluated from replicate measurements of reference sample over the course of 66-h is 1.41 ppbv. With the utilization of wavelet filtering to improve the spectral SNR and minimize the dispersion of concentration values, a better precision of 0.88 ppbv and a lower detection limit of ~0.4 ppbv with sub-second averaging time have been achieved without reducing the fast temporal response. Allan variance analysis indicates a CO measurement precision of ~0.28 ppbv for optimal integration time of approximate 50 s. The absolute accuracy is limited by the calibration gas standard. This completely thermoelectrically cooled system shows the capability of long-term, unattended and continuous operation at room temperature without complicated cryogenic cooling.

© 2012 OSA

OCIS Codes
(120.0280) Instrumentation, measurement, and metrology : Remote sensing and sensors
(280.1120) Remote sensing and sensors : Air pollution monitoring
(300.6340) Spectroscopy : Spectroscopy, infrared
(140.5965) Lasers and laser optics : Semiconductor lasers, quantum cascade

ToC Category:
Remote Sensing

History
Original Manuscript: January 31, 2012
Revised Manuscript: February 23, 2012
Manuscript Accepted: February 23, 2012
Published: March 19, 2012

Citation
Jingsong Li, Uwe Parchatka, Rainer Königstedt, and Horst Fischer, "Real-time measurements of atmospheric CO using a continuous-wave room temperature quantum cascade laser based spectrometer," Opt. Express 20, 7590-7601 (2012)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-7-7590


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, A. Y. Cho, “Quantum cascade laser,” Science 264(5158), 553–556 (1994). [CrossRef] [PubMed]
  2. R. F. Curl, F. Capasso, C. Gmachl, A. A. Kosterev, B. McManus, R. Lewicki, M. Pusharsky, G. Wysocki, F. K. Tittel, “Quantum cascade lasers in chemical physics,” Chem. Phys. Lett. 487(1-3), 1–18 (2010). [CrossRef]
  3. B. G. Lee, M. A. Belkin, R. Audet, J. MacArthur, L. Diehl, C. Pflugl, F. Capasso, D. C. Oakley, D. Chapman, A. Napoleone, D. Bour, S. Corzine, G. Hofler, J. Faist, “Widely tunable single-mode quantum cascade laser source for mid-infrared spectroscopy,” Appl. Phys. Lett. 91(23), 231101 (2007). [CrossRef]
  4. R. Maulini, I. Dunayevskiy, A. Lyakh, A. Tsekoun, C. K. N. Patel, L. Diehl, C. Pflugl, F. Capasso, “Widely tunable high-power external cavity quantum cascade laser operating in continuous-wave at room temperature,” Electron. Lett. 45(2), 107–108 (2009). [CrossRef]
  5. L. Dong, V. Spagnolo, R. Lewicki, F. K. Tittel, “Ppb-level detection of nitric oxide using an external cavity quantum cascade laser based QEPAS sensor,” Opt. Express 19(24), 24037–24045 (2011). [CrossRef] [PubMed]
  6. G. N. Rao, A. Karpf, “External cavity tunable quantum cascade lasers and their applications to trace gas monitoring,” Appl. Opt. 50(4), A100–A115 (2011). [CrossRef] [PubMed]
  7. D. Weidmann, G. Wysocki, C. Oppenheimer, F. K. Tittel, “Development of a compact quantum cascade laser spectrometer for field measurements of CO2 isotopes,” Appl. Phys. B 80(2), 255–260 (2005). [CrossRef]
  8. J. Vanderover, W. Wang, M. A. Oehlschlaeger, “A carbon monoxide and thermometry sensor based on mid-IR quantum-cascade laser wavelength-modulation absorption spectroscopy,” Appl. Phys. B 103(4), 959–966 (2011). [CrossRef]
  9. B. W. M. Moeskops, H. Naus, S. M. Cristescu, F. J. M. Harren, “Quantum cascade laser-based carbon monoxide detection on a second time scale from human breath,” Appl. Phys. B 82(4), 649–654 (2006). [CrossRef]
  10. L. S. Rothman, I. E. Gordon, A. Barbe, D. C. Benner, P. F. Bernath, M. Birk, V. Boudon, L. R. Brown, A. Campargue, J. P. Champion, K. Chance, L. H. Coudert, V. Dana, V. M. Devi, S. Fally, J.-M. Flaud, R. R. Gamache, A. Goldman, D. Jacquemart, I. Kleiner, N. Lacome, W. J. Lafferty, J.-Y. Mandin, S. T. Massie, S. N. Mikhailenko, C. E. Miller, N. Moazzen-Ahmadi, O. V. Naumenko, A. V. Nikitin, J. Orphal, V. I. Perevalov, A. Perrin, A. Predoi-Cross, C. P. Rinsland, M. Rotger, M. Šimečková, M. A. H. Smith, K. Sung, S. A. Tashkun, J. Tennyson, R. A. Toth, A. C. Vandaele, J. Vander Auwera, “The HITRAN 2008 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transf. 110(9-10), 533–572 (2009). [CrossRef]
  11. R. Kormann, H. Fischer, “A compact multi-laser TDLAS for trace gas flux measurements based on a micrometeorological technique,” Proc. SPIE 3758, 162–169 (1999). [CrossRef]
  12. F. G. Wienhold, H. Fischer, P. Hoor, V. Wagner, R. Königstedt, G. W. Harris, J. Anders, R. Grisar, M. Knothe, W. J. Riedel, F.-J. Lübken, T. Schilling, “TRISTAR–a tracer in situ TDLAS for atmospheric research,” Appl. Phys. B 67(4), 411–417 (1998). [CrossRef]
  13. R. Kormann, R. Königstedt, U. Parchatka, J. Lelieveld, H. Fischer, “QUALITAS: A mid-infrared spectrometer for sensitive trace gas measurements based on quantum cascade lasers in CW operation,” Rev. Sci. Instrum. 76(7), 075102 (2005). [CrossRef]
  14. C. L. Schiller, H. Bozem, C. Gurk, U. Parchatka, R. Königstedt, G. W. Harris, J. Lelieveld, H. Fischer, “Applications of quantum cascade lasers for sensitive trace gas measurements of CO, CH4, N2O and HCHO,” Appl. Phys. B 92(3), 419–430 (2008). [CrossRef]
  15. P. W. Werle, P. Mazzinghi, F. D’Amato, M. De Rosa, K. Maurer, F. Slemr, “Signal processing and calibration procedures for in situ diode-laser absorption spectroscopy,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 60(8-9), 1685–1705 (2004). [CrossRef] [PubMed]
  16. B. K. Alsberg, A. M. Woodward, M. K. Winson, J. Rowland, D. B. Kell, “Wavelet denoising of infrared spectra,” Analyst (Lond.) 122(7), 645–652 (1997). [CrossRef]
  17. D. L. Donoho, “De-noising by soft-thresholding,” IEEE Trans. Inf. Theory 41(3), 613–627 (1995). [CrossRef]
  18. R. Provencal, M. Gupta, T. G. Owano, D. S. Baer, K. N. Ricci, A. O’Keefe, J. R. Podolske, “Cavity-enhanced quantum-cascade laser-based instrument for carbon monoxide measurements,” Appl. Opt. 44(31), 6712–6717 (2005). [CrossRef] [PubMed]
  19. L. Tombez, J. Di Francesco, S. Schilt, G. Di Domenico, J. Faist, P. Thomann, D. Hofstetter, “Frequency noise of free-running 4.6 μm distributed feedback quantum cascade lasers near room temperature,” Opt. Lett. 36(16), 3109–3111 (2011). [CrossRef] [PubMed]
  20. R. Jiménez, S. Herndon, J. H. Shorter, D. D. Nelson, J. B. McManus, M. S. Zahniser, “Atmospheric trace gas measurements using a dual quantum-cascade laser mid-infrared absorption spectrometer,” Proc. SPIE 5738, 318–331 (2005). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited