OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 7 — Mar. 26, 2012
  • pp: 7646–7654

Comparative intrinsic optical signal imaging of wild-type and mutant mouse retinas

Qiu-Xiang Zhang, Youwen Zhang, Rong-Wen Lu, Yi-Chao Li, Steven J. Pittler, Timothy W. Kraft, and Xin-Cheng Yao  »View Author Affiliations

Optics Express, Vol. 20, Issue 7, pp. 7646-7654 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (1175 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Functional measurement is important for retinal study and disease diagnosis. Transient intrinsic optical signal (IOS) response, tightly correlated with functional stimulation, has been previously detected in normal retinas. In this paper, comparative IOS imaging of wild-type (WT) and rod-degenerated mutant mouse retinas is reported. Both 2-month and 1-year-old mice were measured. In 2-month-old mutant mice, time course and peak value of the stimulus-evoked IOS were significantly delayed (relative to stimulus onset) and reduced, respectively, compared to age matched WT mice. In 1-year-old mutant mice, stimulus-evoked IOS was totally absent. However, enhanced spontaneous IOS responses, which might reflect inner neural remodeling in diseased retina, were observed in both 2-month and 1-year-old mutant retinas. Our experiments demonstrate the potential of using IOS imaging for noninvasive and high resolution identification of disease-associated retinal dysfunctions. Moreover, high spatiotemporal resolution IOS imaging may also lead to advanced understanding of disease-associated neural remodeling in the retina.

© 2012 OSA

OCIS Codes
(170.3880) Medical optics and biotechnology : Medical and biological imaging
(170.4580) Medical optics and biotechnology : Optical diagnostics for medicine
(330.5380) Vision, color, and visual optics : Physiology
(170.2655) Medical optics and biotechnology : Functional monitoring and imaging

ToC Category:
Medical Optics and Biotechnology

Original Manuscript: December 12, 2011
Revised Manuscript: January 19, 2012
Manuscript Accepted: February 4, 2012
Published: March 20, 2012

Virtual Issues
Vol. 7, Iss. 5 Virtual Journal for Biomedical Optics

Qiu-Xiang Zhang, Youwen Zhang, Rong-Wen Lu, Yi-Chao Li, Steven J. Pittler, Timothy W. Kraft, and Xin-Cheng Yao, "Comparative intrinsic optical signal imaging of wild-type and mutant mouse retinas," Opt. Express 20, 7646-7654 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. C. A. Curcio, N. E. Medeiros, C. L. Millican, “Photoreceptor loss in age-related macular degeneration,” Invest. Ophthalmol. Vis. Sci. 37(7), 1236–1249 (1996). [PubMed]
  2. D. Nagy, B. Schönfisch, E. Zrenner, H. Jägle, “Long-term follow-up of retinitis pigmentosa patients with multifocal electroretinography,” Invest. Ophthalmol. Vis. Sci. 49(10), 4664–4671 (2008). [CrossRef] [PubMed]
  3. Y. W. Qin, G. Z. Xu, W. J. Wang, “Dendritic abnormalities in retinal ganglion cells of three-month diabetic rats,” Curr. Eye Res. 31(11), 967–974 (2006). [CrossRef] [PubMed]
  4. H. P. Scholl, E. Zrenner, “Electrophysiology in the investigation of acquired retinal disorders,” Surv. Ophthalmol. 45(1), 29–47 (2000). [CrossRef] [PubMed]
  5. D. C. Hood, “Assessing retinal function with the multifocal technique,” Prog. Retin. Eye Res. 19(5), 607–646 (2000). [CrossRef] [PubMed]
  6. K. Holthoff, O. W. Witte, “Intrinsic optical signals in vitro: a tool to measure alterations in extracellular space with two-dimensional resolution,” Brain Res. Bull. 47(6), 649–655 (1998). [CrossRef] [PubMed]
  7. R. D. Andrew, C. R. Jarvis, A. S. Obeidat, “Potential sources of intrinsic optical signals imaged in live brain slices,” Methods 18(2), 185–196, 179 (1999). [CrossRef] [PubMed]
  8. M. Haller, S. L. Mironov, D. W. Richter, “Intrinsic optical signals in respiratory brain stem regions of mice: neurotransmitters, neuromodulators, and metabolic stress,” J. Neurophysiol. 86(1), 412–421 (2001). [PubMed]
  9. Y. C. Li, W. X. Cui, X. J. Wang, F. Amthor, R. W. Lu, A. Thompson, X. C. Yao, “Intrinsic optical signal imaging of glucose-stimulated insulin secreting β-cells,” Opt. Express 19(1), 99–106 (2011). [CrossRef] [PubMed]
  10. X. C. Yao, A. Yamauchi, B. Perry, J. S. George, “Rapid optical coherence tomography and recording functional scattering changes from activated frog retina,” Appl. Opt. 44(11), 2019–2023 (2005). [CrossRef] [PubMed]
  11. X. C. Yao, J. S. George, “Dynamic neuroimaging of retinal light responses using fast intrinsic optical signals,” Neuroimage 33(3), 898–906 (2006). [CrossRef] [PubMed]
  12. X. C. Yao, J. S. George, “Near-infrared imaging of fast intrinsic optical responses in visible light-activated amphibian retina,” J. Biomed. Opt. 11(6), 064030 (2006). [CrossRef] [PubMed]
  13. X. C. Yao, Y. B. Zhao, “Optical dissection of stimulus-evoked retinal activation,” Opt. Express 16(17), 12446–12459 (2008). [CrossRef] [PubMed]
  14. X. C. Yao, L. Liu, Y. G. Li, “Intrinsic optical signal imaging of retinal activity in frog eye,” J Innov Opt Health Sci 2(02), 201–208 (2009). [CrossRef]
  15. Q. X. Zhang, J. Y. Wang, L. Liu, X. C. Yao, “Microlens array recording of localized retinal responses,” Opt. Lett. 35(22), 3838–3840 (2010). [CrossRef] [PubMed]
  16. J. Schallek, H. Li, R. Kardon, Y. Kwon, M. Abramoff, P. Soliz, D. Ts’o, “Stimulus-evoked intrinsic optical signals in the retina: spatial and temporal characteristics,” Invest. Ophthalmol. Vis. Sci. 50(10), 4865–4872 (2009). [CrossRef] [PubMed]
  17. Q.-X. Zhang, R.-W. Lu, Y.-G. Li, X.-C. Yao, “In vivo confocal imaging of fast intrinsic optical signals correlated with frog retinal activation,” Opt. Lett. 36(23), 4692–4694 (2011). [CrossRef] [PubMed]
  18. V. J. Srinivasan, Y. Chen, J. S. Duker, J. G. Fujimoto, “In vivo functional imaging of intrinsic scattering changes in the human retina with high-speed ultrahigh resolution OCT,” Opt. Express 17(5), 3861–3877 (2009). [CrossRef] [PubMed]
  19. R. S. Jonnal, J. Rha, Y. Zhang, B. Cense, W. H. Gao, D. T. Miller, “In vivo functional imaging of human cone photoreceptors,” Opt. Express 15(24), 16141–16160 (2007). [CrossRef] [PubMed]
  20. T. Theelen, C. B. Hoyng, B. J. Klevering, and C. B, “Functional imaging of inherited retinal disease with a commercial optical coherence tomography,” Proc. SPIE 8091, 8009110–8009118 (2011).
  21. Y. Zhang, L. L. Molday, R. S. Molday, S. S. Sarfare, M. L. Woodruff, G. L. Fain, T. W. Kraft, S. J. Pittler, “Knockout of GARPs and the β-subunit of the rod cGMP-gated channel disrupts disk morphogenesis and rod outer segment structural integrity,” J. Cell Sci. 122(8), 1192–1200 (2009). [CrossRef] [PubMed]
  22. Y. G. Li, Q. X. Zhang, L. Liu, F. R. Amthor, X. C. Yao, “High spatiotemporal resolution imaging of fast intrinsic optical signals activated by retinal flicker stimulation,” Opt. Express 18(7), 7210–7218 (2010). [CrossRef] [PubMed]
  23. G. L. Kesteven, “The coefficient of variation,” Nature 158(4015), 520–521 (1946). [CrossRef] [PubMed]
  24. X. Huang, W. Kong, Y. Zhou, G. Gregori, “Distortion of axonal cytoskeleton: an early sign of glaucomatous damage,” Invest. Ophthalmol. Vis. Sci. 52(6), 2879–2888 (2011). [CrossRef] [PubMed]
  25. C. Gargini, E. Terzibasi, F. Mazzoni, E. Strettoi, “Retinal organization in the retinal degeneration 10 (rd10) mutant mouse: a morphological and ERG study,” J. Comp. Neurol. 500(2), 222–238 (2007). [CrossRef] [PubMed]
  26. K. P. Hofmann, R. Uhl, W. Hoffmann, W. Kreutz, “Measurements on fast light-induced light-scattering and -absorption changes in outer segments of vertebrate light sensitive rod cells,” Biophys. Struct. Mech. 2(1), 61–77 (1976). [CrossRef] [PubMed]
  27. H. Kühn, N. Bennett, M. Michel-Villaz, M. Chabre, “Interactions between photoexcited rhodopsin and GTP-binding protein: kinetic and stoichiometric analyses from light-scattering changes,” Proc. Natl. Acad. Sci. U.S.A. 78(11), 6873–6877 (1981). [CrossRef] [PubMed]
  28. V. Y. Arshavsky, T. D. Lamb, E. N. Pugh., “G proteins and phototransduction,” Annu. Rev. Physiol. 64(1), 153–187 (2002). [CrossRef] [PubMed]
  29. X. C. Yao, D. M. Rector, J. S. George, “Optical lever recording of displacements from activated lobster nerve bundles and Nitella internodes,” Appl. Opt. 42(16), 2972–2978 (2003). [CrossRef] [PubMed]
  30. I. Tasaki, P. M. Byrne, “Rapid structural changes in nerve fibers evoked by electric current pulses,” Biochem. Biophys. Res. Commun. 188(2), 559–564 (1992). [CrossRef] [PubMed]
  31. G. H. Kim, P. Kosterin, A. L. Obaid, B. M. Salzberg, “A mechanical spike accompanies the action potential in Mammalian nerve terminals,” Biophys. J. 92(9), 3122–3129 (2007). [CrossRef] [PubMed]
  32. L. B. Cohen, “Changes in neuron structure during action potential propagation and synaptic transmission,” Physiol. Rev. 53(2), 373–418 (1973). [PubMed]
  33. R. E. Marc, B. W. Jones, C. B. Watt, E. Strettoi, “Neural remodeling in retinal degeneration,” Prog. Retin. Eye Res. 22(5), 607–655 (2003). [CrossRef] [PubMed]
  34. S. F. Stasheff, “Emergence of sustained spontaneous hyperactivity and temporary preservation of OFF responses in ganglion cells of the retinal degeneration (rd1) mouse,” J. Neurophysiol. 99(3), 1408–1421 (2008). [CrossRef] [PubMed]
  35. J. Borowska, S. Trenholm, G. B. Awatramani, “An intrinsic neural oscillator in the degenerating mouse retina,” J. Neurosci. 31(13), 5000–5012 (2011). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited