OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 7 — Mar. 26, 2012
  • pp: 7672–7684

Optomechanically induced non-reciprocity in microring resonators

Mohammad Hafezi and Peter Rabl  »View Author Affiliations

Optics Express, Vol. 20, Issue 7, pp. 7672-7684 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (1695 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We describe a new approach for on-chip optical non-reciprocity which makes use of strong optomechanical interaction in microring resonators. By optically pumping the ring resonator in one direction, the optomechanical coupling is only enhanced in that direction, and consequently, the system exhibits a non-reciprocal response. For different configurations, this system can function either as an optical isolator or a coherent non-reciprocal phase shifter. We show that the operation of such a device on the level of single-photon could be achieved with existing technology.

© 2012 OSA

OCIS Codes
(230.3240) Optical devices : Isolators
(270.1670) Quantum optics : Coherent optical effects
(120.4880) Instrumentation, measurement, and metrology : Optomechanics

ToC Category:
Integrated Optics

Original Manuscript: October 18, 2011
Revised Manuscript: January 12, 2012
Manuscript Accepted: February 24, 2012
Published: March 20, 2012

Mohammad Hafezi and Peter Rabl, "Optomechanically induced non-reciprocity in microring resonators," Opt. Express 20, 7672-7684 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. R. B. Wehrspohn, H. S. Kitzerow, K. Busch. Nanophotonic Materials: Photonic Crystals, Plasmonics, and Metamaterials (Wiley-VCH, 2008).
  2. J. C. F. Matthews, A. Politi, A. Stefanov, J. L. O’Brien, “Manipulation of multiphoton entanglement in waveguide quantum circuits,” Nat. Photonics 3, 346–350 (2009). [CrossRef]
  3. J. L. O’Brien, A. Furusawa, J. Vučković, “Photonic quantum technologies,” Nat. Photonics 3, 687–695 (2009). [CrossRef]
  4. L. Sansoni, F. Sciarrino, G. Vallone, P. Mataloni, A. Crespi, R. Ramponi, R. Osellame, “Polarization entangled state measurement on a chip,” Phys. Rev. Lett. 105, 200503 (2010). [CrossRef]
  5. A. Politi, J. C. F. Matthews, J. L. O’Brien, “Shor’s quantum factoring algorithm on a photonic chip,” Science 325, 1221 (2009). [CrossRef] [PubMed]
  6. D. G. Angelakis, M. F. Santos, S. Bose, “Photon-blockade-induced mott transitions and xy spin models in coupled cavity arrays,” Phys. Rev. A 76, 31805 (2007). [CrossRef]
  7. A. D. Greentree, C. Tahan, J. H. Cole, L. C. L. Hollenberg, “Quantum phase transitions of light,” Nat. Phys. 2, 856–861 (2006). [CrossRef]
  8. M. J. Hartmann, F. G. S. L. Brandao, M. B. Plenio, “Strongly interacting polaritons in coupled arrays of cavities,” Nat. Phys. 2, 849–855 (2006). [CrossRef]
  9. R. Potton, “Reciprocity in optics,” Rep. Prog. Phys. 67, 717–754 (2004). [CrossRef]
  10. R. L. Espinola, T. Izuhara, M. C. Tsai, R. M. Osgood, H. Dötsch, “Magneto-optical nonreciprocal phase shift in garnet/silicon-on-insulator waveguides,” Opt. Lett. 29, 941–943 (2004). [CrossRef] [PubMed]
  11. M. Levy, “Nanomagnetic route to bias-magnet-free, on-chip faraday rotators,” J. Opt. Soc. Am. B 22, 254–260 (2005). [CrossRef]
  12. T. R. Zaman, X. Guo, R. J. Ram, “Faraday rotation in an InP waveguide,” App. Phys. Lett. 90, 023514 (2007). [CrossRef]
  13. Z. Yu, S. Fan, “Complete optical isolation created by indirect interband photonic transitions,” Nat. Photonics 3, 91–94 (2009). [CrossRef]
  14. M. S. Kang, A. Butsch, P. St. J. Russell, “Reconfigurable light-driven opto-acoustic isolators in photonic crystal fibre,” Nat. Photonics 5, 549–553 (2011). [CrossRef]
  15. L. Feng, M. Ayache, J. Huang, Y. -L. Xu, M. -H. Lu, Y. -F. Chen, Y. Fainman, A. Scherer, “Nonreciprocal light propagation in a silicon photonic circuit,” Science 333, 729–733 (2011). [CrossRef] [PubMed]
  16. S. Fan, R. Baets, A. Petrov, Z. Yu, J. D. Joannopoulos, W. Freude, A. Melloni, M. Popovic, M. Vanwolleghem, D. Jalas, M. Eich, M. Krause, H. Renner, E. Brinkmeyer, C. R. Doerr, ”Comment on Nonreciprocal light propagation in a silicon photonic circuit,” Science 335, 38 (2011). [CrossRef]
  17. M. Soljačić, C. Luo, J. D. Joannopoulos, S. Fan, “Nonlinear photonic crystal microdevices for optical integration,” Opt. Lett. 28, 637–639 (2004). [CrossRef]
  18. K. Gallo, G. Assanto, K. Parameswaran, M. Fejer, “All-optical diode in a periodically poled lithium niobate waveguide,” Appl. Phys. Lett. 79, 314–316 (2001). [CrossRef]
  19. S. Manipatruni, J. Robinson, M. Lipson, “Optical nonreciprocity in optomechanical structures,” Phys. Rev. Lett. 102, 213903 (2009). [CrossRef] [PubMed]
  20. J. Koch, A. A Houck, K. Le Hur, S. M. Girvin, “Time-reversal symmetry breaking in circuit-QED based photon lattices,” Phys. Rev. A 82, 043811 (2010). [CrossRef]
  21. Z. Wang, Y. Chong, J. D. Joannopoulos, M. Soljačić, “Reflection-free one-way edge modes in a gyromagnetic photonic crystal,” Phys. Rev. Lett. 100, 13905 (2008). [CrossRef]
  22. Z. Wang, Y. Chong, J. D. Joannopoulos, M. Soljacic, “Observation of unidirectional backscattering-immune topological electromagnetic states,” Nature 461,772–775 (2009). [CrossRef] [PubMed]
  23. F. Haldane, S. Raghu, “Possible realization of directional optical waveguides in photonic crystals with broken time-reversal symmetry,” Phys. Rev. Lett. 100, 13904 (2008). [CrossRef]
  24. M. Hafezi, E. A. Demler, M. D. Lukin, J. M. Taylor, “Robust optical delay lines with topological protection,” Nat. Phys. 7, 907–912 (2011). [CrossRef]
  25. R. O. Umucalilar, I. Carusotto, “Artificial gauge field for photons in coupled cavity arrays,” Phys. Rev. A 84, 043804 (2011). [CrossRef]
  26. E. Verhagen, S. Deléglise, S. Weis, A. Schliesser, T. J. Kippenberg, “Quantum-coherent coupling of a mechanical oscillator to an optical cavity mode,” arXiv:1107.3761 (2011).
  27. J. Chan, T. P. Mayer Alegre, A. H. Safavi-Naeini, J. T. Hill, A. Krause, Simon Gröblacher, M. Aspelmeyer, O. Painter, “Laser cooling of a nanomechanical oscillator into its quantum ground state,” Nature 478, 89–92 (2011). [CrossRef] [PubMed]
  28. T. Carmon, K. Vahala, “Modal spectroscopy of optoexcited vibrations of a micron-scale on-chip resonator at greater than 1 ghz frequency,” Phys. Rev. Lett. 98,123901 (2007). [CrossRef] [PubMed]
  29. L. Ding, C. Baker, P. Senellart, A. Lemaitre, S. Ducci, G. Leo, I. Favero, “High frequency gaas nano-optomechanical disk resonator,” Phys. Rev. Lett. 105, 263903 (2010). [CrossRef]
  30. K. Stannigel, P. Rabl, A. S. Sørensen, P. Zoller, M. Lukin, “Optomechanical transducers for long-distance quantum communication,” Phys. Rev. Lett. 105, 220501 (2010). [CrossRef]
  31. D. E. Chang, A.H. Safavi-Naeini, M. Hafezi, O. Painter, “Slowing and stopping light using an optomechanical crystal array,” New J. Phys. 13, 023003 (2011). [CrossRef]
  32. K. Stannigel, P. Rabl, A. S. Sørensen, M. D. Lukin, P. Zoller, “Optomechanical transducers for quantum information processing,” Phys. Rev. A 84, 042341 (2011). [CrossRef]
  33. C. Fabre, M. Pinard, S. Bourzeix, A. Heidmann, E. Giacobino, S. Reynaud, “Quantum-noise reduction using a cavity with a movable mirror,” Phys. Rev. A 49,1337–1343 (1994). [CrossRef] [PubMed]
  34. I. Wilson-Rae, N. Nooshi, W. Zwerger, T. Kippenberg, “Theory of ground state cooling of a mechanical oscillator using dynamical backaction,” Phys. Rev. Lett. 99, 093901 (2007). [CrossRef] [PubMed]
  35. F. Marquardt, J. P. Chen, A. A. Clerk, S. M. Girvin, “Quantum theory of cavity-assisted sideband cooling of mechanical motion,” Phys. Rev. Lett. 99, 93902 (2007). [CrossRef]
  36. A. Schliesser, T. J. Kippenberg, “Cavity optomechanics with whispering-gallery mode optical microresonators,” Adv. At., Mol., Opt. Phys. 58, 207–323 (2010). [CrossRef]
  37. C. W. Gardiner, M. J. Collett, “Input and output in damped quantum systems: Quantum stochastic differential equations and the master equation,” Phys. Rev. A 31, 3761–3774 (1985). [CrossRef] [PubMed]
  38. M. Fleischhauer, A. Imamoglu, J. P. Marangos, “Electromagnetically induced transparency: optics in coherent media,” Rev. Mod. Phys., 77, 633–673 (2005). [CrossRef]
  39. G. S. Agarwal, S. Huang, “Electromagnetically induced transparency in mechanical effects of light,” Phys. Rev. A, 81, 041803 (2010). [CrossRef]
  40. S. Weis, R. Riviere, S. Deleglise, E. Gavartin, O. Arcizet, A. Schliesser, T. J. Kippenberg, “Optomechanically induced transparency,” Science, 330,1520–1523 (2010). [CrossRef] [PubMed]
  41. A. H. Safavi-Naeini, T. P. M. Alegre, J. Chan, M. Eichenfield, M. Winger, Q. Lin, J. T. Hill, D. E. Chang, O. Painter, “Electromagnetically induced transparency and slow light with optomechanics,” Nature 472, 69–73 (2011). [CrossRef] [PubMed]
  42. T. J. Kippenberg, S. M. Spillane, K. J. Vahala, “Modal coupling in traveling-wave resonators,” Opt. Lett. 27, 1669–1671 (2002). [CrossRef]
  43. A. Mazzei, S. Götzinger, L. de S. Menezes, G. Zumofen, O. Benson, V. Sandoghdar, “Controlled coupling of counterpropagating whispering-gallery modes by a single rayleigh scatterer: a classical problem in a quantum optical light,” Phys. Rev. Lett. 99, 173603 (2007). [CrossRef] [PubMed]
  44. S. Mancini, P. Tombesi, “Quantum noise reduction by radiation pressure,” Phys. Rev. A 49, 4055–4065 (1994). [CrossRef] [PubMed]
  45. D. Brooks, T. Botter, N. Brahms, T. Purdy, S. Schreppler, D. Stamper-Kurn, “Ponderomotive light squeezing with atomic cavity optomechanics,” arXiv:1107.5609 (2011).
  46. P. Rabl, “Photon blockade effect in optomechanical systems,” Phys. Rev. Lett. 107, 063601 (2011). [CrossRef] [PubMed]
  47. T. Aoki, B. Dayan, E. Wilcut, W. P. Bowen, A. S. Parkins, T. J. Kippenberg, K. J. Vahala, H. J. Kimble, “Observation of strong coupling between one atom and a monolithic microresonator,” Nature, 443, 671 (2006). [CrossRef] [PubMed]
  48. R. E. Prange, S. M. Girvin, M. E. Cage. The Quantum Hall Effect. (Springer-Verlag, 1986).
  49. A. Comtet, T. Jolicoeur, S. Ouvry, F. David, editors, The Quantum Hall Effect: Novel Excitations and Broken Symmetries (Spinger-Verlag, 2000).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited