OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 7 — Mar. 26, 2012
  • pp: 7716–7725

Highly nonlinear fiber with dispersive characteristic invariant to fabrication fluctuations

Bill P.-P. Kuo and Stojan Radic  »View Author Affiliations

Optics Express, Vol. 20, Issue 7, pp. 7716-7725 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (2292 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



New class of highly nonlinear fibers possessing dispersive characteristics invariant to transverse geometry fluctuations is described. The sensitivity to stochastic core fluctuations is reduced by order of magnitude while maintaining the fiber nonlinear coefficient. The effectiveness of the new highly nonlinear fiber type is demonstrated on stochastically perturbed distant-band mixer that could not be previously constructed with high-confinement fiber. The new fiber design offers a unique platform for ideally phase matched parametric exchange with significantly increased Brillouin threshold.

© 2012 OSA

OCIS Codes
(060.2280) Fiber optics and optical communications : Fiber design and fabrication
(190.4975) Nonlinear optics : Parametric processes

ToC Category:
Fiber Optics and Optical Communications

Original Manuscript: January 4, 2012
Revised Manuscript: February 29, 2012
Manuscript Accepted: March 1, 2012
Published: March 20, 2012

Bill P.-P. Kuo and Stojan Radic, "Highly nonlinear fiber with dispersive characteristic invariant to fabrication fluctuations," Opt. Express 20, 7716-7725 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. S. Radic, C. J. McKinstrie, “Optical amplification and signal processing in highly nonlinear optical fiber,” IEICE Trans. Electron. E88-C, 859–869 (2005).
  2. M. A. Foster, A. C. Turner, J. E. Sharping, B. S. Schmidt, M. Lipson, A. L. Gaeta, “Broad-band optical parametric gain on a silicon photonic chip,” Nature 441, 960–963 (2006). [CrossRef] [PubMed]
  3. M. Galili, J. Zu, H. C. Mulvadm, L. K. Oxenløwe, A. T. Clausen, P. Jeppesen, B. Luther-Davies, S. Madden, A. Rode, D.-Y. Choi, M. Pelusi, F. Luan, B. J. Eggleton, “Breakthrough switching speed with an all-optical chalcogenide glass chip: 640 Gbits/s demultiplexing,” Opt. Express 17, 2182–2187 (2009).
  4. S. Radic, “Parametric signal processing,” IEEE J. Sel. Top. Quantum Electron. (to appear).
  5. A. O. J. Wiberg, B. P.-P. Kuo, C.-S. Brès, N. Alic, S. Radic, “640-Gb/s transmitter and self-tracked demultiplexing receiver using single parametric gate,” IEEE Photon. Technol. Lett. 23(8), 507–509 (2011). [CrossRef]
  6. R. Slavik, F. Parmigiani, J. Kakande, C. Lundström, M. Sjödin, P. A. Andrekson, R. Weerasuriya, S. Sygletos, A. D. Ellis, L. Grüner-Nielsen, D. Jakobsen, S. Herstrøm, R. Phelan, J. O’Gorman, A. Bogris, D. Syvridis, S. Dasgupta, P. Petropoulos, D. J. Richardson, “All-optical phase and amplitude regenerator for next-generation telecommunications systems,” Nat. Photonics 4(10), 690–695 (2010). [CrossRef]
  7. B. P.-P. Kuo, E. Myslivets, A. O. J. Wiberg, S. Zlatanovic, C.-S. Brès, S. Moro, F. Gholami, A. Peric, N. Alic, S. Radic, “Transmission of 640-Gb/s RZ-OOK Channel over 100-km SSMF by wavelength-transparent conjugation,” J. Lightwave Technol. 29(4), 516–523 (2011). [CrossRef]
  8. H. Sunnerud, S. Oda, J. Yang, T. Nishitani, and P. A. Andrekson, “Optical add-drop multiplexer based on fiber optical parametric amplification,” in Proc. ECOC 2007, paper 5.3.5.
  9. A. O. J. Wiberg, C.-S. Brès, A. Danicic, E. Myslivets, S. Radic, “Performance of self-seeded parametric multicasting of analog signal,” IEEE Photon. Technol. Lett. 23(21), 1570–1572 (2011). [CrossRef]
  10. R. Jiang, R. E. Saperstein, N. Alic, M. Nezhad, C. J. McKinstrie, J. E. Ford, Y. Fainman, S. Radic, “Continuous-wave band translation between the near-infrared and visible spectral ranges,” J. Lightwave Technol. 25(1), 58–66 (2007). [CrossRef]
  11. F. Gholami, S. Zlatanovic, E. Myslivets, S. Moro, B. P.-P. Kuo, C.-S. Brès, A. O. J. Wiberg, N. Alic, and S. Radic, “10Gbps parametric short-wave infrared transmitter,” in Proc. OFC/NFOEC 2011, paper OThC6, 2011.
  12. M. Hirano, T. Nakanishi, T. Okuno, M. Onishi, “Silica-based highly nonlinear fiber and their application,” IEEE J. Sel. Top. Quantum Electron. 15(1), 103–113 (2009). [CrossRef]
  13. E. Myslivets, N. Alic, J. R. Windmiller, S. Radic, “A new class of high-resolution measurements of arbitrary-dispersion fibers: localization of four-photon mixing process,” J. Lightwave Technol. 27(3), 364–375 (2009). [CrossRef]
  14. F. Yaman, Q. Lin, S. Radic, G. P. Agrawal, “Impact of dispersion fluctuations on dual-pump fiber-optical parametric amplifiers,” IEEE Photon. Technol. Lett. 16(5), 1292–1294 (2004). [CrossRef]
  15. M. Yu, C. J. McKinstrie, G. P. Agrawal, “Modulational instabilities in dispersion-flattened fibers,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 52(1), 1072–1080 (1995). [CrossRef] [PubMed]
  16. M. E. Marhic, K. K.-Y. Wong, L. G. Kazovsky, “Wide-band tuning of the gain spectra of one-pump fiber optical parametric amplifiers,” IEEE J. Sel. Top. Quantum Electron. 10(5), 1133–1141 (2004). [CrossRef]
  17. B. P.-P. Kuo, N. Alic, P. F. Wysocki, S. Radic, “Simultaneous wavelength-swept generation in NIR and SWIR bands over combined 329-nm band using swept-pump fiber optical parametric oscillator,” J. Lightwave Technol. 29(4), 410–416 (2011). [CrossRef]
  18. A. Gershikov, E. Shumakher, A. Willinger, G. Eisenstein, “Fiber parametric oscillator for the 2 μm wavelength range based on narrowband optical parametric amplification,” Opt. Lett. 35(19), 3198–3200 (2010). [CrossRef] [PubMed]
  19. S. Moro, E. Myslivets, J. R. Windmiller, N. Alic, J. M. Chavez Boggio, S. Radic, “Synthesis of equalized broadband parametric gain by localized dispersion mapping,” IEEE Photon. Technol. Lett. 20(23), 1971–1973 (2008). [CrossRef]
  20. E. Myslivets, C. Lundström, S. Moro, A. O. J. Wiberg, C.-S. Brès, N. Alic, P. A. Andrekson, and S. Radic, “Dispersion fluctuation equalization nonlinear fibers of spatially controlled tension,” in Proc. OFC/NFOEC 2010, paper OTuA5, 2010.
  21. L. H. Gabrielli, H. E. Hernández-Figueroa, H. L. Fragnito, “Robustness optimization of fiber index profiles for optical parametric amplifiers,” J. Lightwave Technol. 27(24), 5571–5579 (2009). [CrossRef]
  22. J. M. Chavez Boggio, S. Moro, B. P.-P. Kuo, N. Alic, B. Stossel, S. Radic, “Tunable parametric all-fiber short-wavelength IR transmitter,” J. Lightwave Technol. 28(4), 443–447 (2010). [CrossRef]
  23. M. Farahmand, M. de Sterke, “Parametric amplification in presence of dispersion fluctuations,” Opt. Express 12(1), 136–142 (2004). [CrossRef] [PubMed]
  24. L. B. Jeunhomme, Single-Mode Fiber Optics: Principles and Applications (Dekker, New York, 1990).
  25. V. A. Bogatyrev, M. M. Bubnov, E. M. Dianov, A. S. Kurkov, P. V. Mamyshev, A. M. Prokhorov, S. D. Rumyantsev, V. A. Semenov, S. L. Semenov, A. A. Sysoliatin, S. V. Chernikov, A. N. Gur’yanov, G. G. Devyatykh, S. I. Miroshnichenko, “A single-mode fiber with chromatic dispersion varying along the length,” J. Lightwave Technol. 9(5), 561–566 (1991). [CrossRef]
  26. A. Snyder and J. D. Love, Optical Waveguide Theory (Kluwer, London, 2000).
  27. T. Kato, Y. Suetsugu, M. Nishimura, “Estimation of nonlinear refractive index in various silica-based glasses for optical fibers,” Opt. Lett. 20(22), 2279–2284 (1995). [CrossRef] [PubMed]
  28. A. Wada, T. Nozawa, T.-O. Tsun, R. Yamauchi, ““Suppression of stimulated Brillouin scattering by intentionally induced periodic residual –strain in single-mode optical fibers,” IEICE Trans. Commun,” E 76-B, 345–351 (1993).
  29. P. Kylemark, J. Ren, Y. Myslivets, N. Alic, S. Radic, P. A. Andrekson, M. Karlsson, “Impact of pump phase-modulation on the bit-error rate in fiber-optical parametric-amplifier-based systems,” IEEE Photon. Technol. Lett. 19(1), 79–81 (2007). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited