OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 7 — Mar. 26, 2012
  • pp: 7726–7740

Plasmonic band structures and optical properties of subwavelength metal/dielectric/metal Bragg waveguides

Chao Li, Yun-Song Zhou, and Huai-Yu Wang  »View Author Affiliations


Optics Express, Vol. 20, Issue 7, pp. 7726-7740 (2012)
http://dx.doi.org/10.1364/OE.20.007726


View Full Text Article

Enhanced HTML    Acrobat PDF (2751 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

In this paper, we applied the band structure theory to investigate the plasmonic band (PB) structures and optical properties of subwavelength metal/dielectric/metal Bragg waveguides in the near infrared range with either dielectric or geometric modulation. The Bloch wave vector, density of states, slowdown factor, propagation length and transmittance are calculated and analyzed. Both the modulations are in favor of manipulating surface-plasmon-polariton (SPP) waves. For the dielectric modulation, the PB structure is mainly formed by SPP modes and possesses a “regular pattern” in which the bands and gaps have a relatively even distribution. For the geometric modulation, due to the strong transverse scattering, the contributions of higher modes have to be considered and the gap widths have a significant increase compared to the dielectric modulation. A larger slowdown factor may emerge at the band edge; especially for the geometric modulation, the group velocity can be reduced to 1/100 of light, and negative group velocity is observed as well. While inside the bands, the slowdown factor is smaller and the bands are flat. The contribution of each eigenmode to the PB structure is analyzed.

© 2012 OSA

OCIS Codes
(230.1480) Optical devices : Bragg reflectors
(230.7380) Optical devices : Waveguides, channeled
(240.6680) Optics at surfaces : Surface plasmons
(290.5825) Scattering : Scattering theory

ToC Category:
Optics at Surfaces

History
Original Manuscript: January 17, 2012
Revised Manuscript: February 18, 2012
Manuscript Accepted: February 20, 2012
Published: March 20, 2012

Citation
Chao Li, Yun-Song Zhou, and Huai-Yu Wang, "Plasmonic band structures and optical properties of subwavelength metal/dielectric/metal Bragg waveguides," Opt. Express 20, 7726-7740 (2012)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-7-7726


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. W. L. Barnes, A. Dereux, T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature (London) 424, 824–830 (2003). [CrossRef]
  2. S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J. Y. Laluet, T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature (London) 440, 508–511 (2006). [CrossRef]
  3. E. Ozbay, “Plasmonics: merging photonics and electronics at nanoscale dimensions,” Science 311, 189–193 (2006). [CrossRef] [PubMed]
  4. H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer-Verlag, 1988).
  5. F. Villa, T. Lopez-Rios, L. E. Regalado, “Electromagnetic modes in metal-insulator-metal structures,” Phys. Rev. B 63, 165103 (2001). [CrossRef]
  6. J. A. Dionne, L. A. Sweatlock, H. A. Atwater, “Plasmon slot waveguides: towards chip-scale propagation with subwavelength-scale localization,” Phys. Rev. B 73, 035407 (2006). [CrossRef]
  7. R. Gordon, “Light in a subwavelength slit in a metal: propagation and reflection,” Phys. Rev. B 73, 153405 (2006). [CrossRef]
  8. Y. Kurokawa, H. T. Miyazaki, “Metal-insulator-metal plasmon nanocavities: analysis of optical properties,” Phys. Rev. B 75, 035411 (2007). [CrossRef]
  9. B. Sturman, E. Podivilov, M. Gorkunov, “Eigenmodes for metal-dielectric light-transmitting nanostructures,” Phys. Rev. B 76, 125104 (2007). [CrossRef]
  10. C. Li, Y. S. Zhou, H. Y. Wang, F. H. Wang, “Wavelength squeeze of surface plasmon polariton in a subwavelength metal slit,” J. Opt. Soc. Am. B 27, 59–64 (2010). [CrossRef]
  11. C. Li, Y. S. Zhou, H. Y. Wang, F. H. Wang, “Investigation of the wave behaviors inside a step-modulated subwavelength metal slit,” Opt. Express 19, 10073–10087 (2011). [CrossRef] [PubMed]
  12. C. Li, Y. S. Zhou, H. Y. Wang, “Scattering mechanism in a step-modulated subwavelength metal slit: a multi-mode multi-reflection analysis,” Eur. Phys. J. D 66, 8 (2012). [CrossRef]
  13. E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58, 2059–2062 (1987). [CrossRef] [PubMed]
  14. S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett. 58, 2486–2489 (1987). [CrossRef] [PubMed]
  15. J. D. Joannopoulos, P. R. Villeneuve, S. Fan, “Photonic crystals: putting a new twist on light,” Nature (London) 386, 143–149 (1997). [CrossRef]
  16. J. D. Joannopoulos, R. D. Meade, J. N. Winn, Photonic Crystals (Princeton U. Press1995).
  17. K. Sakoda, Optical Properties of Photonic Crystals (Springer-Verlag, 2001).
  18. Z. Y. Li, L. L. Lin, “Photonic band structures solved by a plane-wave-based transfer-matrix method,” Phys. Rev. E 67, 046607 (2003). [CrossRef]
  19. Z. Y. Li, K. M. Ho, “Analytic modal solution to light propagation through layer-by-layer metallic photonic crystals,” Phys. Rev. B 67, 165104 (2003). [CrossRef]
  20. Y. S. Zhou, B. Y. Gu, H. Y. Wang, “Band-gap structures of surface-plasmon polaritons in a subwavelength metal slit filled with periodic dielectrics,” Phys. Rev. A 81, 015801 (2010). [CrossRef]
  21. G. Y. Li, L. Cai, F. Xiao, Y. J. Pei, A. S. Xu, “A quantitative theory and the generalized Bragg condition for surface plasmon Bragg reflectors,” Opt. Express 18, 10487–10499 (2010). [CrossRef] [PubMed]
  22. X. L. Zhong, Z. Y. Li, C. Wang, Y. S. Zhou, “Analytical single-mode model for subwavelength metallic Bragg waveguides,” J. Appl. Phys. 109, 093115 (2011). [CrossRef]
  23. A. Hossieni, Y. Massoud, “A low-loss metal-insulator-metal plasmonic bragg reflector,” Opt. Express 14, 11318–11323 (2006). [CrossRef] [PubMed]
  24. Z. Han, E. Forsberg, S. He, “Surface plasmon Bragg gratings formed in metal-insulator-metal waveguides,” IEEE Photon. Technol. Lett. 19, 91–93 (2007). [CrossRef]
  25. J. Q. Liu, L. L. Wang, M. D. He, W. Q. Huang, D. Y. Wang, B. S. Zou, S. C. Wen, “A wide bandgap plasmonic Bragg reflector,” Opt. Express 16, 4888–4894 (2008). [CrossRef] [PubMed]
  26. Y. Liu, Y. Liu, J. Kim, “Characteristics of plasmonic Bragg reflectors with insulator width modulated in sawtooth profiles,” Opt. Express 18, 11589–11598 (2010). [CrossRef] [PubMed]
  27. A. Hosseini, H. Nejati, Y. Massoud, “Modeling and design methodology for metal-insulator-metal plasmonic Bragg reflectors,” Opt. Express 16, 1475–1480 (2008). [CrossRef] [PubMed]
  28. J. Liu, G. Fang, H. Zhao, Y. Zhang, S. Liu, “Surface plasmon reflector based on serial stub structure,” Opt. Express 17, 20134–20139 (2009). [CrossRef] [PubMed]
  29. L. Yang, C. Min, G. Veronis, “Guided subwavelength slow-light mode supported by a plasmonic waveguide system,” Opt. Lett. 35, 4184–4186 (2010). [CrossRef] [PubMed]
  30. Y. Xu, A. E. Miroshnichenko, S. Lan, Q. Guo, L. J. Wu, “Impedance matching induce high transmissionand flat response band-pass plasmonic waveguides,” Plasmonics 6, 337–343 (2011). [CrossRef]
  31. Z. W. Kang, W. H. Lin, G. P. Wang, “Dual-channel broadband slow surface plasmon polaritons in metal gap waveguide superlattices,” J. Opt. Soc. Am. B 26, 1944–1945 (2009). [CrossRef]
  32. Y. S. Zhou, B. Y. Gu, S. Lan, L. M. Zhao, “Time-domain analysis of mechanism of plasmon-assisted extraordinary optical transmission,” Phys. Rev. B 78, 081404 (2008). [CrossRef]
  33. P. B. Johnson, R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972). [CrossRef]
  34. L. Li, “Note on the S-matrix propagation algorithm,” J. Opt. Soc. Am. A 20, 655–660 (2003). [CrossRef]
  35. L. Brillouin, Wave Propagation and Group Velocity (Academic, 1960).
  36. T. F. Krauss, “Why do we need slow light?” Nat. Photonics 2, 448–450 (2008). [CrossRef]
  37. E. P. Fitrakis, T. Kamalakis, T. Sphicopoulos, “Slow light in insulator-metal-insulator plasmonic waveguides,” J. Opt. Soc. Am. B 28, 2159–2164 (2011). [CrossRef]
  38. D. Y. Fedyanin, A. V. Arsenin, V. G. Leiman, A. D. Gladun, “Backward waves in planar insulator-metal-insulator waveguide structures,” J. Opt. 12, 015002 (2010). [CrossRef]
  39. B. Han, C. Jiang, “Plasmonic slow light waveguide and cavity,” Appl. Phys. B: Lasers Opt. 95, 97–103 (2009). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited