OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 7 — Mar. 26, 2012
  • pp: 7758–7770

Monolithic integration of III-V nanowire with photonic crystal microcavity for vertical light emission

Alexandre Larrue, Christophe Wilhelm, Gwenaelle Vest, Sylvain Combrié, Alfredo De Rossi, and Cesare Soci  »View Author Affiliations


Optics Express, Vol. 20, Issue 7, pp. 7758-7770 (2012)
http://dx.doi.org/10.1364/OE.20.007758


View Full Text Article

Enhanced HTML    Acrobat PDF (1188 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A novel photonic structure formed by the monolithic integration of a vertical III-V nanowire on top of a L3 two-dimensional photonic crystal microcavity is proposed to enhance light emission from the nanowire. The impact on the nanowire spontaneous emission rate is evaluated by calculating the spontaneous emission factor β, and the material gain at threshold is used as a figure of merit of this vertical emitting nanolaser. An optimal design is identified for a GaAs nanowire geometry with r = 155 nm and L~1.1 μm, where minimum gain at threshold (gth ~ 13 × 1 0 3 cm−1) and large spontaneous emission factor (β~0.3) are simultaneously achieved. Modification of the directivity of the L3 photonic crystal cavity via the band-folding principle is employed to further optimize the far-field radiation pattern and to increase the directivity of the device. These results lay the foundation for a new approach toward large-scale integration of vertical emitting nanolasers and may enable applications such as intra-chip optical interconnects.

© 2012 OSA

OCIS Codes
(140.4780) Lasers and laser optics : Optical resonators
(160.4236) Materials : Nanomaterials
(350.4238) Other areas of optics : Nanophotonics and photonic crystals
(140.7270) Lasers and laser optics : Vertical emitting lasers

ToC Category:
Photonic Crystals

History
Original Manuscript: February 7, 2012
Revised Manuscript: March 6, 2012
Manuscript Accepted: March 11, 2012
Published: March 20, 2012

Citation
Alexandre Larrue, Christophe Wilhelm, Gwenaelle Vest, Sylvain Combrié, Alfredo De Rossi, and Cesare Soci, "Monolithic integration of III-V nanowire with photonic crystal microcavity for vertical light emission," Opt. Express 20, 7758-7770 (2012)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-7-7758


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. H. J. Joyce, Q. Gao, H. Hoe Tan, C. Jagadish, Y. Kim, J. Zou, L. M. Smith, H. E. Jackson, J. M. Yarrison-Rice, P. Parkinson, M. B. Johnston, “III–V semiconductor nanowires for optoelectronic device applications,” Prog. Quantum Electron. 35(2-3), 23–75 (2011). [CrossRef]
  2. C. Wilhelm, A. Larrue, X. Dai, D. Migas, C. Soci, “Anisotropic photonic properties of III-V nanowires in the zinc-blende and wurtzite phase,” Nanoscale 4(5), 1446–1454 (2012). [CrossRef] [PubMed]
  3. W. Wei, X.-Y. Bao, C. Soci, Y. Ding, Z.-L. Wang, D. Wang, “Direct heteroepitaxy of vertical InAs nanowires on Si substrates for broad band photovoltaics and photodetection,” Nano Lett. 9(8), 2926–2934 (2009). [CrossRef] [PubMed]
  4. X.-Y. Bao, C. Soci, D. Susac, J. Bratvold, D. P. R. Aplin, W. Wei, C.-Y. Chen, S. A. Dayeh, K. L. Kavanagh, D. Wang, “Heteroepitaxial growth of vertical GaAs nanowires on Si(111) substrates by metal-organic chemical vapor deposition,” Nano Lett. 8(11), 3755–3760 (2008). [CrossRef] [PubMed]
  5. K. Tomioka, T. Tanaka, S. Hara, K. Hiruma, T. Fukui, “III-V nanowires on Si substrate: selective-area growth and device applications,” IEEE J. Sel. Top. Quantum Electron. 17(4), 1112–1129 (2011). [CrossRef]
  6. A. H. Chin, S. Vaddiraju, A. V. Maslov, C. Z. Ning, M. K. Sunkara, M. Meyyappan, “Near-infrared semiconductor subwavelength-wire lasers,” Appl. Phys. Lett. 88(16), 163115 (2006). [CrossRef]
  7. J. C. Johnson, H.-J. Choi, K. P. Knutsen, R. D. Schaller, P. Yang, R. J. Saykally, “Single gallium nitride nanowire lasers,” Nat. Mater. 1(2), 106–110 (2002). [CrossRef] [PubMed]
  8. J. C. Johnson, H. Yan, R. D. Schaller, L. H. Haber, R. J. Saykally, P. Yang, “Single nanowire lasers,” J. Phys. Chem. B 105(46), 11387–11390 (2001). [CrossRef]
  9. X. Duan, Y. Huang, R. Agarwal, C. M. Lieber, “Single-nanowire electrically driven lasers,” Nature 421(6920), 241–245 (2003). [CrossRef] [PubMed]
  10. Y. Xiao, C. Meng, P. Wang, Y. Ye, H. Yu, S. Wang, F. Gu, L. Dai, L. Tong, “Single-nanowire single-mode laser,” Nano Lett. 11(3), 1122–1126 (2011). [CrossRef] [PubMed]
  11. B. Hua, J. Motohisa, Y. Kobayashi, S. Hara, T. Fukui, “Single GaAs/GaAsP coaxial core-shell nanowire lasers,” Nano Lett. 9(1), 112–116 (2009). [CrossRef] [PubMed]
  12. R. Chen, T.-T. D. Tran, K. W. Ng, W. S. Ko, L. C. Chuang, F. G. Sedgwick, C. Chang-Hasnain, “Nanolasers grown on silicon,” Nat. Photonics 5(3), 170–175 (2011). [CrossRef]
  13. C. J. Barrelet, J. Bao, M. Loncar, H.-G. Park, F. Capasso, C. M. Lieber, “Hybrid single-nanowire photonic crystal and microresonator structures,” Nano Lett. 6(1), 11–15 (2006). [CrossRef] [PubMed]
  14. H.-G. Park, F. Qian, C. J. Barrelet, Y. Li, “Microstadium single-nanowire laser,” Appl. Phys. Lett. 91(25), 251115 (2007). [CrossRef]
  15. S. Noda, M. Fujita, T. Asano, “Spontaneous-emission control by photonic crystals and nanocavities,” Nat. Photonics 1(8), 449–458 (2007). [CrossRef]
  16. T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, D. G. Deppe, “Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature 432(7014), 200–203 (2004). [CrossRef] [PubMed]
  17. J. Heo, W. Guo, P. Bhattacharya, “Monolithic single GaN nanowire laser with photonic crystal microcavity on silicon,” Appl. Phys. Lett. 98(2), 021110 (2011). [CrossRef]
  18. L. Yang, J. Motohisa, T. Fukui, L. X. Jia, L. Zhang, M. M. Geng, P. Chen, Y. L. Liu, T. Wang, “Fabry-Pérot microcavity modes observed in the micro-photoluminescence spectra of the single nanowire with InGaAs/GaAs heterostructure,” Opt. Express 17(11), 9337–9346 (2009). [CrossRef] [PubMed]
  19. C. Z. Ning, “Semiconductor nanolasers,” Phys. Status Solidi 247, 774–788 (2010) (b).
  20. M.-K. Seo, J.-K. Yang, K.-Y. Jeong, H.-G. Park, F. Qian, H.-S. Ee, Y.-S. No, Y.-H. Lee, “Modal characteristics in a single-nanowire cavity with a triangular cross section,” Nano Lett. 8(12), 4534–4538 (2008). [CrossRef] [PubMed]
  21. A.-L. Henneghien, B. Gayral, Y. Désières, J.-M. Gérard, “Simulation of waveguiding and emitting properties of semiconductor nanowires with hexagonal or circular sections,” J. Opt. Soc. Am. B 26(12), 2396–2403 (2009). [CrossRef]
  22. .-Q. Wang, Y.-Z. Huang, Q. Chen, Z.-P. Cai, “Analysis of mode quality factors and mode reflectivities for nanowire cavity by FDTD technique,” IEEE J. Quantum Electron. 42(2), 146–151 (2006). [CrossRef]
  23. A. V. Maslov, C. Z. Ning, “Modal properties of semiconductor nanowires for laser application,” Proc. SPIE 5349, 24–30 (2004). [CrossRef]
  24. I. Friedler, C. Sauvan, J. P. Hugonin, P. Lalanne, J. Claudon, J. M. Gérard, “Solid-state single photon sources: the nanowire antenna,” Opt. Express 17(4), 2095–2110 (2009). [CrossRef] [PubMed]
  25. L. Chen, E. Towe, “Nanowire lasers with distributed-Bragg-reflector mirrors,” Appl. Phys. Lett. 89(5), 053125 (2006). [CrossRef]
  26. L. A. Coldren and S. W. Corzine, Diode Lasers and Photonic Integrated Circuits (John Wiley & Sons, New York, 1995).
  27. S. Strauf, K. Hennessy, M. T. Rakher, Y. S. Choi, A. Badolato, L. C. Andreani, E. L. Hu, P. M. Petroff, D. Bouwmeester, “Self-tuned quantum dot gain in photonic crystal lasers,” Phys. Rev. Lett. 96(12), 127404 (2006). [CrossRef] [PubMed]
  28. Y. S. Choi, M. T. Rakher, K. Hennessy, S. Strauf, A. Badolato, P. M. Petroff, D. Bouwmeester, E. L. Hu, “Evolution of the onset of coherence in a family of photonic crystal nanolasers,” Appl. Phys. Lett. 91(3), 031108 (2007). [CrossRef]
  29. T. Baba, D. Sano, “Low-threshold lasing and Purcell effect in microdisk lasers at room temperature,” IEEE J. Sel. Top. Quantum Electron. 9(5), 1340–1346 (2003). [CrossRef]
  30. R. Hostein, R. Braive, L. Le Gratiet, A. Talneau, G. Beaudoin, I. Robert-Philip, I. Sagnes, A. Beveratos, “Demonstration of coherent emission from high-β photonic crystal nanolasers at room temperature,” Opt. Lett. 35(8), 1154–1156 (2010). [CrossRef] [PubMed]
  31. L. C. Andreani, G. Panzarini, J.-M. Gérard, “Strong-coupling regime for quantum boxes in pillar microcavities: Theory,” Phys. Rev. B 60(19), 13276–13279 (1999). [CrossRef]
  32. J. M. Gérard, B. Sermage, B. Gayral, B. Legrand, E. Costard, V. Thierry-Mieg, “Enhanced spontaneous emission by quantum boxes in a monolithic optical microcavity,” Phys. Rev. Lett. 81(5), 1110–1113 (1998). [CrossRef]
  33. T. Suhr, N. Gregersen, K. Yvind, J. Mørk, “Modulation response of nanoLEDs and nanolasers exploiting Purcell enhanced spontaneous emission,” Opt. Express 18(11), 11230–11241 (2010). [CrossRef] [PubMed]
  34. J. M. Gérard, “Solid-state cavity-quantum electrodynamics with self-assembled quantum dots,” in Single quantum dots, Fundamentals, Applications, and New Concepts, P. Michler, ed. (Springer, Berlin, 2003), pp. 269–314.
  35. T. Baba, “Photonic crystals and microdisk cavities based on GaInAsP-InP system,” IEEE J. Sel. Top. Quantum Electron. 3(3), 808–830 (1997). [CrossRef]
  36. M. Fujita, A. Sakai, T. Baba, “Ultrasmall and ultralow threshold GaInAsP-InP microdisk injection lasers: design, fabrication, lasing characteristics, and spontaneous emission factor,” IEEE J. Sel. Top. Quantum Electron. 5(3), 673–681 (1999). [CrossRef]
  37. T. Baba, T. Hamano, F. Koyama, K. Iga, “Spontaneous emission factor of a microcavity DBR surface-emitting laser,” IEEE J. Quantum Electron. 27(6), 1347–1358 (1991). [CrossRef]
  38. D. Spirkoska, G. Abstreiter, A. F. Morral, “GaAs nanowires and related prismatic heterostructures,” Semicond. Sci. Technol. 24(11), 113001 (2009). [CrossRef]
  39. C. Kim, W. J. Kim, A. Stapleton, J.-R. Cao, J. D. O'Brien, P. D. Dapkus, “Quality factors in single-defect photonic-crystal lasers with asymmetric cladding layers,” J. Opt. Soc. Am. B 19(8), 1777–1781 (2002). [CrossRef]
  40. S. Matsuo, A. Shinya, T. Kakitsuka, K. Nozaki, T. Segawa, T. Sato, Y. Kawaguchi, M. Notomi, “High-speed ultracompact buried heterostructure photonic-crystal laser with 13 fJ of energy consumed per bit transmitted,” Nat. Photonics 4(9), 648–654 (2010). [CrossRef]
  41. B. Ellis, M. A. Mayer, G. Shambat, T. Sarmiento, J. Harris, E. E. Haller, J. Vuckovic, “Ultralow-threshold electrically pumped quantum-dot photonic-crystal nanocavity laser,” Nat. Photonics 5(5), 297–300 (2011). [CrossRef]
  42. C. Sauvan, P. Lalanne, J. P. Hugonin, “Slow-wave effect and mode-profile matching in photonic crystal microcavities,” Phys. Rev. B 71(16), 165118 (2005). [CrossRef]
  43. A. R. A. Chalcraft, S. Lam, D. O'Brien, T. F. Krauss, M. Sahin, D. Szymanski, D. Sanvitto, R. Oulton, M. S. Skolnick, A. M. Fox, D. M. Whittaker, H. Y. Liu, M. Hopkinson, “Mode structure of the L3 photonic crystal cavity,” Appl. Phys. Lett. 90(24), 241117 (2007). [CrossRef]
  44. A. V. Maslov, C. Z. Ning, “Far-field emission of a semiconductor nanowire laser,” Opt. Lett. 29(6), 572–574 (2004). [CrossRef] [PubMed]
  45. N.-V.-Q. Tran, S. Combrié, P. Colman, A. De Rossi, T. Mei, “Vertical high emission in photonic crystal nanocavities by band-folding design,” Phys. Rev. B 82(7), 075120 (2010). [CrossRef]
  46. J. Vuckovic, M. Loncar, H. Mabuchi, A. Scherer, “Optimization of the Q factor in photonic crystal microcavities,” IEEE J. Quantum Electron. 38(7), 850–856 (2002). [CrossRef]
  47. J. Heinrich, A. Huggenberger, T. Heindel, S. Reitzenstein, S. Hofling, L. Worschech, A. Forchel, “Single photon emission from positioned GaAs/AlGaAs photonic nanowires,” Appl. Phys. Lett. 96(21), 211117 (2010). [CrossRef]
  48. S. N. Dorenbos, H. Sasakura, M. P. van Kouwen, N. Akopian, S. Adachi, N. Namekata, M. Jo, J. Motohisa, Y. Kobayashi, K. Tomioka, T. Fukui, S. Inoue, H. Kumano, C. M. Natarajan, R. H. Hadfield, T. Zijlstra, T. M. Klapwijk, V. Zwiller, I. Suemune, “Position controlled nanowires for infrared single photon emission,” Appl. Phys. Lett. 97(17), 171106 (2010). [CrossRef]
  49. N.-V.-Q. Tran, S. Combrié, A. De Rossi, “Directive emission from high-Q photonic crystal cavities through band folding,” Phys. Rev. B 79(4), 041101 (2009). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited