OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 7 — Mar. 26, 2012
  • pp: 7822–7832

Determination of wavefront structure for a Hartmann Wavefront Sensor using a phase-retrieval method

A. Polo, V. Kutchoukov, F. Bociort, S.F. Pereira, and H.P. Urbach  »View Author Affiliations


Optics Express, Vol. 20, Issue 7, pp. 7822-7832 (2012)
http://dx.doi.org/10.1364/OE.20.007822


View Full Text Article

Enhanced HTML    Acrobat PDF (2342 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We apply a phase retrieval algorithm to the intensity pattern of a Hartmann wavefront sensor to measure with enhanced accuracy the phase structure of a Hartmann hole array. It is shown that the rms wavefront error achieved by phase reconstruction is one order of magnitude smaller than the one obtained from a typical centroid algorithm. Experimental results are consistent with a phase measurement performed independently using a Shack-Hartmann wavefront sensor.

© 2012 OSA

OCIS Codes
(100.5070) Image processing : Phase retrieval
(120.5050) Instrumentation, measurement, and metrology : Phase measurement
(220.1080) Optical design and fabrication : Active or adaptive optics

ToC Category:
Adaptive Optics

History
Original Manuscript: December 9, 2011
Revised Manuscript: March 3, 2012
Manuscript Accepted: March 15, 2012
Published: March 21, 2012

Citation
A. Polo, V. Kutchoukov, F. Bociort, S.F. Pereira, and H.P. Urbach, "Determination of wavefront structure for a Hartmann Wavefront Sensor using a phase-retrieval method," Opt. Express 20, 7822-7832 (2012)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-7-7822


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. C. A. Mack, Fundamental Principles of Optical Lithography: The Science of Microfabrication (Wiley-Interscience, 2007). [CrossRef]
  2. V. Bakshi, EUV Lithography (SPIE Press, 2009).
  3. R. Saathof, Precision and Microsystem Engineering Dept., Delft University of Technology (private communication).
  4. G. E. Sommargren, D. W. Phillion, M. A. Johnson, N. Q. Nguyen, A. Barty, F. J. Snell, D. R. Dillon, L. S. Bradsher, “100-picometer interferometry for EUVL,” Proc. SPIE 4688, 316–328 (2002). [CrossRef]
  5. A. Polo, F. Bociort, S. F. Pereira, H. P. Urbach, “Wavefront measurement for EUV lithography system through Hartmann sensor,” Proc. SPIE 7971, 79712R (2011). [CrossRef]
  6. L. A. Carvalho, “A simple and effective algorithm for detection of arbitrary Hartmann-Shack patterns.” J. Biomed. Inf. 37, 1–9 (2004). [CrossRef]
  7. C. Leroux, C. Dainty, “Estimation of centroid positions with a matched-filter algorithm: relevance for aberrometry of the eye,” Opt. Express 18, 1197–206 (2010). [CrossRef] [PubMed]
  8. W. H Southwell, “Wave-front estimation from wave-front slope measurements,” J. Opt. Soc. Am. 70, 998–1006 (1980). [CrossRef]
  9. R. Shannon, R. Shack, J. Harvey, R. Hooker, Robert Shannon and Roland Shack: legends in applied optics, Press Monograph (SPIE Press, 2005).
  10. D. R. Neal, “Shack-Hartmann wavefront sensor precision and accuracy,” Proc. SPIE 4779, 148–160 (2002). [CrossRef]
  11. P. Mercère, P. Zeitoun, M. Idir, S. L. Pape, D. Douillet, X. Levecq, G. Dovillaire, S. Bucourt, K. A. Goldberg, P. P. Naulleau, S. Rekawa, “Hartmann wave-front measurement at 13.4 nm with λEUV/120 accuracy,” Opt. Lett. 28, 1534–1536 (2003). [CrossRef] [PubMed]
  12. P. Mercère, M. Idir, J. Floriot, X. Levecq, A. Erko, T. Krist, A. Michette, Modern developments in X-Ray and neutron optics, (Springer BerlinHeidelberg, Berlin, Heidelberg, 2008).
  13. H. H. Barrett, C. Dainty, D. Lara, “Maximum-likelihood methods in wavefront sensing: stochastic models and likelihood functions,” J. Opt. Soc. Am. A. 24, 391–414 (2007). [CrossRef]
  14. J. W. Goodman, Introduction to Fourier optics (Roberts and Company Publishers, 2005).
  15. R. W. Gerchberg, W. O. Saxton, “A practical algorithm for the determination of the phase from image and diffraction plane pictures,” Optik 35, 237–246 (1972).
  16. J. R. Fienup, “Phase retrieval algorithms: a comparison,” Appl. Opt. 21, 2758–69 (1982). [CrossRef] [PubMed]
  17. J. R Fienup, “Phase-retrieval algorithms for a complicated optical system,” Appl. Opt. 32, 1737–1746 (1993). [CrossRef] [PubMed]
  18. T. F. Coleman, Y. Li, “An interior trust region approach for nonlinear minimization subject to bounds,” SIAM J. Optim. 6, 418–445 (1996). [CrossRef]
  19. T. F. Coleman, Y. Li, “On the convergence of reflective Newton methods for large-scale nonlinear minimization subject to bounds,” Math. Program. 67, 189–224 (1994). [CrossRef]
  20. With the autorization of Imagine Optic, patent no. Eur 1415133 - US 7,255,442 - Jap 4212472.
  21. D. Malacara, Optical Shop Testing (Wiley-Interscience, 2007). [CrossRef]
  22. C. López-Quesada, J. Andilla, E. Martín-Badosa, “Correction of aberration in holographic optical tweezers using a Shack-Hartmann sensor,” Appl. Opt. 48, 1084–1090 (2009). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited