OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 7 — Mar. 26, 2012
  • pp: 7833–7869

Spatially distributed successive approximation register (SDSAR) photonic ADCs based on phase-domain quantization

Moshe Nazarathy and Oded Shaham  »View Author Affiliations


Optics Express, Vol. 20, Issue 7, pp. 7833-7869 (2012)
http://dx.doi.org/10.1364/OE.20.007833


View Full Text Article

Enhanced HTML    Acrobat PDF (2484 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We explore photonic ADC architectures based on encoding voltage-under-test into phase. The first step is to identify two basic optical building blocks: the optical phase comparator (1-bit ADC), based on interferometric comparison of phases in the well-known balanced photo-detection configuration, and the optical 1-bit DAC, namely electro-optic modulation with a bipolar electrical pulse. Equipped with these fundamental building blocks, we proceed to systematically port and adapt known ADC quantization architectures to photonic ADC, conceiving a hybrid between the Successive Approximation Register (SAR) and the Pipeline classic ADC architectures, referred to here as Spatially Distributed SAR (SDSAR). This novel photonic ADC, constructed out of B 1-bit ADCs and B-2 1-bit DACs, with B the number of bits, is not equivalent to any of the previous photonic ADCs in the literature, but appears superior to prior schemes in both optical power efficiency and electro-optic modulation complexity. We derive upper bounds on resolution, Effective Number of Bits (ENOB) performance as a function of average optical power for the new SDSAR device, developing analytic and numeric Monte-Carlo statistical models, comprising quantization, shot, thermal and DAC voltage noise sources. Our findings indicate that SDSAR is limited to ~11.5 ENOBs, assuming state-of-the-art mode-locked-lasers providing ~250 mW of average power (assuming ~7 dB excess losses). However, this upper bound is not tight, due to various physical impairments. In particular, the mode locked laser jitter is shown to have negligible impact on overall performance for RMS jitter < 20 fsec.

© 2012 OSA

OCIS Codes
(120.3180) Instrumentation, measurement, and metrology : Interferometry
(130.3120) Integrated optics : Integrated optics devices

ToC Category:
Integrated Optics

History
Original Manuscript: December 13, 2011
Revised Manuscript: February 27, 2012
Manuscript Accepted: March 12, 2012
Published: March 21, 2012

Citation
Moshe Nazarathy and Oded Shaham, "Spatially distributed successive approximation register (SDSAR) photonic ADCs based on phase-domain quantization," Opt. Express 20, 7833-7869 (2012)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-7-7833


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. C. Twichell, P. W. Juodawlkis, J. L. Wasserman, R. C. Williamson, and G. E. Betts, “Extending the performance of optically sampled time-demultiplexed analog-to-digital converters,” in Conference on Lasers and Electro-Optics (CLEO), 624–625 (2000).
  2. P. W. Juodawlkis, J. C. Twichell, G. E. Betts, J. J. Hargreaves, R. D. Younger, J. L. Wasserman, F. J. O’Donnell, K. G. Ray, R. C. Williamson, “Optically sampled analog-to-digital converters,” IEEE Trans. Microw. Theory Tech. 49(10), 1840–1853 (2001). [CrossRef]
  3. J. C. Twichell, J. L. Wasserman, P. W. Juodawlkis, G. E. Betts, R. C. Williamson, “High-linearity 208-MS/s photonic analog-to-digital converter using 1-to-4 optical time-division demultiplexers,” IEEE Photon. Technol. Lett. 13(7), 714–716 (2001). [CrossRef]
  4. P. W. Juodawlkis, J. J. Hargreaves, R. D. Younger, G. W. Titi, J. C. Twichell, “Optical down-sampling of wide-band microwave signals,” J. Lightwave Technol. 21(12), 3116–3124 (2003). [CrossRef]
  5. P. W. Juodawlkis, J. J. Hargreaves, R. D. Younger, R. C. Williamson, G. E. Belts, and C. Twichell, “Optical sampling for high-speed, high-resolution analog-to-digital converters,” in Microwave Photonics,2003. MWP 2003 Proceedings. International Topical Meeting on, 2003, p. Microwave Photonics, 2003. MWP 2003 Proceedings. I.
  6. A. H. Nejadmalayeri, M. Grein, A. Khilo, J. P. Wang, M. Y. Sander, M. Peng, C. M. Sorace, E. P. Ippen, and F. X. Kärtner, “A 16-fs aperture-jitter photonic ADC: 7.0 ENOB at 40 GHz,” in Lasers and Electro-Optics (CLEO), CHTI6 (2011).
  7. S. Gupta, G. C. Valley, R. H. Walden, and B. Jalali, “Power scaling in photonic time-stretch ADC and its power consumption,” in Avionics, Fiber-Optics and Phototonics and Photonics Technology Conference, 2009. AVFOP ’09. IEEE, 5–6 (2009).
  8. J. Chou, J. A. Conway, G. A. Sefler, G. C. Valley, B. Jalali, “Photonic bandwidth compression front end for digital oscilloscopes,” J. Lightwave Technol. 27(22), 5073–5077 (2009). [CrossRef]
  9. B. Jalali and K. Goda, “Photonic time-stretch: from world’s fastest digitizer to the world’s fastest camera,” in Microwave Photonics (MWP), 2010 IEEE Topical Meeting on 1–2 (2010).
  10. G. A. Sefler, J. Chou, J. A. Conway, G. C. Valley, “Distortion correction in a high-resolution time-stretch ADC scalable to continuous time,” J. Lightwave Technol. 28(10), 1468–1476 (2010). [CrossRef]
  11. L. Y. Nathawad, R. Urata, B. A. Wooley, D. A. B. Miller, “A 40-GHz-bandwidth, 4-bit, time-interleaved A/D converter using photoconductive sampling,” IEEE J. Solid-state Circuits 38(12), 2021–2030 (2003). [CrossRef]
  12. F. X. Kartner, R. Amataya, G. Barbastathis, H. Byun, F. Gan, C. W. Holzwarth, J. L. Hoyt, E. P. Ippen, O. O. Olubuyide, J. S. Orcutta, M. Par, M. Perrotta, M. A. Popovic, P. T. Rakich, R. J. Ram, H. I. Smith, M. Geis, M. Grein, T. Lyszczarz, S. Spector, and J. U. Yoon, “Silicon electronic photonic integrated circuits for high speed analog to digital conversion,” in 3rd IEEE International Conference on Group IV Photonics, 203–205 (2006).
  13. M. E. Grein, S. J. Spector, H. G. Rao, T. M. Lyszczarz, M. W. Geis, D. M. Lennon, J. Yoon, R. T. Schulein, A. Khilo, and F. X. Kaertner, “Demonstration of a photonic analog-to-digital converter scalable to 40 GS/s with 8-bit resolution,” in Conference on Lasers and Electro-Optics, 1–2 (2008).
  14. M. E. Grein, S. J. Spector, A. Khilo, A. H. Najadmalayeri, M. Y. Sander, M. Peng, J. Wang, C. M. Sorace, M. W. Geis, M. M. Willis, D. M. Lennon, T. M. Lyszczarz, E. P. Ippen, and F. X. Kärtner, “Demonstration of a 10 GHz CMOS-compatible integrated photonic analog-to-digital converter,” in Lasers and Electro-Optics (CLEO), 2011 Conference on, (2011).
  15. H. F. Taylor, “An electrooptic analog-to-digital converter,” Proc. IEEE 63(10), 1524–1525 (1975). [CrossRef]
  16. R. A. Becker, C. E. Woodward, F. J. Leonberger, R. C. Williamson, “Wide-band electrooptic guided-wave analog-to-digital converters,” Proc. IEEE 72(7), 802–819 (1984). [CrossRef]
  17. M. Currie, T. R. Clark, P. J. Matthews, “Photonic analog-to-digital conversion by distributed phase modulation,” IEEE Photon. Technol. Lett. 12(12), 1689–1691 (2000). [CrossRef]
  18. M. Currie, “High-speed, photonic analog-to-digital conversion using phase modulation,” in Conference on Lasers and Electro-Optics (CLEO’01), 68–69 (2001).
  19. X. Hou, A. Daryoush, W. Rosen, H. Burstyn, and P. Zalud, “Design of an ultra high-speed all-optical analog-to-digital converter,” Proceedings of the 2004 IEEE Radar Conference, 520–523 (2004).
  20. M. Currie, “Optical quantization of microwave signals via distributed phase modulation,” J. Lightwave Technol. 23(2), 827–833 (2005). [CrossRef]
  21. K. Ikeda, J. Abdul, S. Namiki, K.-I. Kitayama, “Optical quantizing and coding for ultrafast A/D conversion using nonlinear fiber-optic switches based on Sagnac interferometer,” Opt. Express 13(11), 4296–4302 (2005). [CrossRef] [PubMed]
  22. Q. Wu, H. Zhang, X. Fu, and M. Yao, “A new proposal of spectral encoded photonic analog-to-digital converter,” 2008 International Topical Meeting on Microwave Photonics jointly held with the 2008 Asia-Pacific Microwave Photonics Conference1, 247–250 (2008).
  23. Q. Wu, H. Zhang, X. Fu, M. Yao, “Spectral encoded photonic analog-to-digital converter based on cascaded unbalanced MZMs,” IEEE Photon. Technol. Lett. 21(4), 224–226 (2009). [CrossRef]
  24. L. Xu, S. Zhang, X. Zhou, J. Dai, Y. Yang, Y. Liu, and Y. Liu, “Electro-optical analog-to-digital converter based on LiNbO3 Mach-Zehnder modulators,” in Optical Communications and Networks (ICOCN 2010), 9th International Conference on (2010).
  25. J. Stigwall, S. Galt, “Interferometric analog-to-digital conversion scheme,” IEEE Photon. Technol. Lett. 17(2), 468–470 (2005). [CrossRef]
  26. J. Stigwall, S. Galt, “Demonstration and analysis of a 40-gigasample/s interferometric analog-to-digital converter,” J. Lightwave Technol. 24(3), 1247–1256 (2006). [CrossRef]
  27. W. Li, H. Zhang, Q. Wu, Z. Zhang, M. Yao, “All-optical analog-to-digital conversion based on polarization-differential interference and phase modulation,” IEEE Photon. Technol. Lett. 19(8), 625–627 (2007). [CrossRef]
  28. H. Chi, J. Yao, “A photonic analog-to-digital conversion scheme using Mach-Zehnder modulators with identical half-wave voltages,” Opt. Express 16(2), 567–572 (2008). [CrossRef] [PubMed]
  29. Q. Wu, H. Zhang, Y. Peng, X. Fu, M. Yao, “40GS/s Optical analog-to-digital conversion system and its improvement,” Opt. Express 17(11), 9252–9257 (2009). [CrossRef] [PubMed]
  30. M. Nazarathy, “Integrated photonic circuits for ultra-fast sampling and inherently linear 6-bits flash quantization based on coherent multi-phase interferometry,” in European Conference of Integrated Optics (ECIO’10), WeB7 (2010).
  31. T. R. Clark, P. J. Matthews, and M. Currie, “Discrete wavelength-time mapping,” in Microwave Photonics, MWP ’99, 231–234 (1999).
  32. L. Pierno, M. Dispenza, G. Tonelli, A. Bogoni, P. Ghelfi, and L. Poti, “A photonic ADC for radar and EW applications based on modelocked laser,” in 2008 International Topical Meeting on Microwave Photonics jointly held with the 2008 Asia-Pacific Microwave Photonics Conference, 236–239 (2008).
  33. A. Feldster, Y. P. Shapira, M. Horowitz, A. Rosenthal, S. Zach, L. Singer, “Optical under-sampling and reconstruction of several bandwidth-limited signals,” J. Lightwave Technol. 27(8), 1027–1033 (2009). [CrossRef]
  34. P. Ghelfi, L. Ma, X. Wu, M. Yao, A. E. Willner, and A. Bogoni, “All-optical parallelization for high sampling rate photonic ADC in fully digital radar systems,” in OFC/NFOEC - Conference on Optical Fiber Communication and the National Fiber Optic Engineers Conference, 1–3.(2010)
  35. L. Ma, P. Ghelfi, M. Yao, F. Berizzi, A. Bogoni, “Demonstration of optical sample parallelisation for high-speed photonic assisted ADCs,” Electron. Lett. 47(5), 333–335 (2011). [CrossRef]
  36. P. Ghelfi, F. Scotti, A. T. Nguyen, G. Serafino, and A. Bogoni, “Ultra-stable radar signal from a photonics-assisted transceiver based on single mode-locking laser,” in Conference on Optical Fiber Communication and the National Fiber Optic Engineers Conference (OFC/NFOEC’11) (2011).
  37. R. Llorente, M. Morant, N. Amiot, B. Uguen, “Novel photonic analog-to-digital converter architecture for precise localization of ultra-wide band radio transmitters,” IEEE J. Sel. Areas Comm. 29(6), 1321–1327 (2011). [CrossRef]
  38. P. Ghelfi, F. Scotti, A. T. Nguyen, G. Serafino, A. Bogoni, “Novel architecture for a photonics-assisted radar transceiver based on a single mode-locking laser,” IEEE Photon. Technol. Lett. 23(10), 639–641 (2011). [CrossRef]
  39. R. C. Williamson, “Two decades of photonic analog-to-digital converters,” in Lasers and Electro-Optics, 2004. (CLEO). Conference on, 275–276 (2004).
  40. G. C. Valley, “Photonic analog-to-digital converters,” Opt. Express 15(5), 1955–1982 (2007). [CrossRef] [PubMed]
  41. U. Keller, “Recent developments in compact ultrafast lasers,” Nature 424(6950), 831–838 (2003). [CrossRef] [PubMed]
  42. O. D. Sieber, et al., “Femtosecond VCSELs with up to 1-W average output,” in Lasers and Electro-Optics (CLEO), 2011 Conference on, 7–8 (2011).
  43. J. Kim, M. J. Park, M. H. Perrott, F. X. Kärtner, “Photonic subsampling analog-to-digital conversion of microwave signals at 40-GHz with higher than 7-ENOB resolution,” Opt. Express 16(21), 16509–16515 (2008). [CrossRef] [PubMed]
  44. J. Kim, M. Park, M. H. Perrott, and F. X. Kartner, “7-ENOB resolution photonic analog-to-digital conversion of narrowband microwave signals at 40 GHz,” in Conference on Lasers and Electro-Optics (CLEO’08), 1–2 (2008).
  45. B. Murmann and B. E. Boser, Digitally Assisted Pipeline ADCs - Theory and Implementation (Kluwer Academic, 2004).
  46. S. Khan, M. A. Baghban, S. Fathpour, “Electronically tunable silicon photonic delay lines,” Opt. Express 19(12), 11780–11785 (2011). [CrossRef] [PubMed]
  47. A. Melloni, A. Canciamilla, C. Ferrari, F. Morichetti, L. O'Faolain, T. F. Krauss, R. De La Rue, A. Samarelli, M. Sorel, “Tunable delay Lines in silicon photonics: Coupled resonators and photonic crystals, a comparison,” IEEE Photon. J. 2(2), 181–194 (2010). [CrossRef]
  48. W. Bogaerts, S. K. Selvaraja, P. Dumon, J. Brouckaert, K. De Vos, D. Van Thourhout, R. Baets, “Silicon-on-insulator spectral Filters fabricated with CMOS technology,” IEEE J. Sel. Top. Quantum Electron. 16(1), 33–44 (2010). [CrossRef]
  49. J. F. Bauters, M. J. R. Heck, D. D. John, J. S. Barton, C. M. Bruinink, A. Leinse, R. G. Heideman, D. J. Blumenthal, J. E. Bowers, “Planar waveguides with less than 0.1 dB/m propagation loss fabricated with wafer bonding,” Opt. Express 19(24), 24090–24101 (2011). [CrossRef] [PubMed]
  50. M. J. R. Heck, G. Kurczveil, E. F. Burmeister, H. Park, J. P. Mack, D. J. Blumenthal, J. E. Bowers, ““Integrated recirculating optical buffers,” in Proc,” Proc. SPIE 16, 11124–11131 (2008).
  51. J. K. Doylend, M. J. R. Heck, J. T. Bovington, J. D. Peters, L. A. Coldren, J. E. Bowers, “Two-dimensional free-space beam steering with an optical phased array on silicon-on-insulator,” Opt. Express 19(22), 21595–21604 (2011). [CrossRef] [PubMed]
  52. P. W. Juodawlkis, J. J. Hargreaves, and J. C. Twichell, “Impact of photodetector nonlinearities on photonic analog-to-digital converters,” in Lasers and Electro-Optics, 2002. CLEO ’02, 11–12 (2002).
  53. M. Gustavsson, J. J. Wikner, and N. N. Tan, CMOS Data Converters for Communications (Kluwer Academic, 2002).
  54. B. Murmann, “‘ADC Performance Survey 1997-2011,’ [Online]. Available: http://www.stanford.edu/~murmann/adcsurvey.html ,” (2011).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited