OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 7 — Mar. 26, 2012
  • pp: 7870–7885

High-precision atom localization via controllable spontaneous emission in a cycle-configuration atomic system

Chunling Ding, Jiahua Li, Rong Yu, Xiangying Hao, and Ying Wu  »View Author Affiliations


Optics Express, Vol. 20, Issue 7, pp. 7870-7885 (2012)
http://dx.doi.org/10.1364/OE.20.007870


View Full Text Article

Enhanced HTML    Acrobat PDF (1237 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A scheme for realizing two-dimensional (2D) atom localization is proposed based on controllable spontaneous emission in a coherently driven cycle-configuration atomic system. As the spatial-position-dependent atom-field interaction, the frequency of the spontaneously emitted photon carries the information about the position of the atom. Therefore, by detecting the emitted photon one could obtain the position information available, and then we demonstrate high-precision and high-resolution 2D atom localization induced by the quantum interference between the multiple spontaneous decay channels. Moreover, we can achieve 100% probability of finding the atom at an expected position by choosing appropriate system parameters under certain conditions.

© 2012 OSA

OCIS Codes
(020.1670) Atomic and molecular physics : Coherent optical effects
(020.5580) Atomic and molecular physics : Quantum electrodynamics

ToC Category:
Atomic and Molecular Physics

History
Original Manuscript: December 1, 2011
Revised Manuscript: March 1, 2012
Manuscript Accepted: March 16, 2012
Published: March 21, 2012

Citation
Chunling Ding, Jiahua Li, Rong Yu, Xiangying Hao, and Ying Wu, "High-precision atom localization via controllable spontaneous emission in a cycle-configuration atomic system," Opt. Express 20, 7870-7885 (2012)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-7-7870


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. W. D Phillips, “Nobel lecture: Laser cooling and trapping of neutral atoms,” Rev. Mod. Phys. 70, 721–741 (1998). [CrossRef]
  2. G. P Collins, “Experimenters produce new Bose-Einstein Condensate(s) and possible puzzles for theorists,” Phys. Today 49, 18–21 (1996). [CrossRef]
  3. Y. Wu, X. X. Yang, C. P. Sun, “Systematic method to study the general structure of Bose-Einstein condensates with arbitrary spin,” Phys. Rev. A 62, 063603 (2000). [CrossRef]
  4. K. S. Johnson, J. H. Thywissen, N. H. Dekker, K. K. Berggren, A. P. Chu, R. Younkin, M. Prentiss, “Localization of metastable atom beams with optical standing waves: nanolithography at the Heisenberg limit,” Science 280, 1583–1586 (1998). [CrossRef] [PubMed]
  5. L. L. Jin, H. Sun, Y. P. Niu, S. Q. Jin, S. Q. Gong, “Two-dimension atom nano-lithograph via atom localization,” J. Mod. Opt. 56, 805–810 (2009). [CrossRef]
  6. K. T. Kapale, S. Qamar, M. S. Zubairy, “Spectroscopic measurement of an atomic wave function,” Phys. Rev. A 67, 023805 (2003). [CrossRef]
  7. P. Storey, M. Collett, D. Walls, “Measurement-induced diffraction and interference of atoms,” Phys. Rev. Lett. 68, 472–475 (1992). [CrossRef] [PubMed]
  8. P. Storey, M. Collett, D. Walls, “Atomic-position resolution by quadrature-field measurement,” Phys. Rev. A 47, 405–418 (1993). [CrossRef] [PubMed]
  9. R. Quadt, M. Collett, D. F. Walls, “Measurement of atomic motion in a standing light field by homodyne detection,” Phys. Rev. Lett. 74, 351–354 (1995). [CrossRef] [PubMed]
  10. F. L. Kien, G. Rempe, W. P. Schleich, M. S. Zubairy, “Atom localization via Ramsey interferometry: A coherent cavity field provides a better resolution,” Phys. Rev. A 56, 2972–2977 (1997). [CrossRef]
  11. J. Xu, X. M. Hu, “Sub-half-wavelength localization of an atom via trichromatic phase control,” J. Phys. B: At. Mol. Opt. Phys. 40, 1451–1459 (2007). [CrossRef]
  12. E. Paspalakis, P. L. Knight, “Localizing an atom via quantum interference,” Phys. Rev. A 63, 065802 (2001). [CrossRef]
  13. S. Qamar, S. Y. Zhu, M. S. Zubairy, “Atom localization via resonance fluorescence,” Phys. Rev. A 61, 063806 (2000). [CrossRef]
  14. M. Macovei, J. Evers, C. H. Keitel, M. S. Zubairy, “Localization of atomic ensembles via superfluorescence,” Phys. Rev. A 75, 033801 (2007). [CrossRef]
  15. M. Sahrai, H. Tajalli, K. T. Kapale, M. S. Zubairy, “Subwavelength atom localization via amplitude and phase control of the absorption spectrum,” Phys. Rev. A 72, 013820 (2005). [CrossRef]
  16. K. T. Kapale, M. S. Zubairy, “Subwavelength atom localization via amplitude and phase control of the absorption spectrum. II,” Phys. Rev. A 73, 023813 (2006). [CrossRef]
  17. H. Nha, J. H. Lee, J. S. Chang, K. An, “Atomic-position localization via dual measurement,” Phys. Rev. A 65, 033827 (2002). [CrossRef]
  18. S. Qamar, A. Mehmood, S. Qamar, “Subwavelength atom localization via coherent manipulation of the Raman gain process,” Phys. Rev. A 79, 033848 (2009). [CrossRef]
  19. C. P. Liu, S. Q. Gong, D. C. Cheng, X. J. Fan, Z. Z. Xu, “Atom localization via interference of dark resonances,” Phys. Rev. A 73, 025801 (2006). [CrossRef]
  20. D. C. Cheng, Y. P. Niu, R. X. Li, S. Q. Gong, “Controllable atom localization via double-dark resonances in a tripod system,” J. Opt. Soc. Am. B 23, 2180–2184 (2006). [CrossRef]
  21. G. S. Agarwal, K. T. Kapale, “Subwavelength atom localization via coherent population trapping,” J. Phys. B: At. Mol. Opt. Phys. 39, 3437–3446 (2006). [CrossRef]
  22. J. E Thomas, “Uncertainty-limited position measurement of moving atoms using optical fields,” Opt. Lett. 14, 1186–1188 (1989). [CrossRef] [PubMed]
  23. K. D. Stokes, C. Schnurr, J. R. Gardner, M. Marable, G. R. Welch, J. E. Thomas, “Precision position measurement of moving atoms using optical fields,” Phys. Rev. Lett. 67, 1997–2000 (1991). [CrossRef] [PubMed]
  24. J. R. Gardner, M. L. Marable, G. R. Welch, J. E. Thomas, “Suboptical wavelength position measurement of moving atoms using optical fields,” Phys. Rev. Lett. 70, 3404–3407 (1993). [CrossRef] [PubMed]
  25. N. A. Proite, Z. J. Simmons, D. D. Yavuz, “Observation of atomic localization using electromagnetically induced transparency,” Phys. Rev. A 83, 041803(R) (2011). [CrossRef]
  26. F. Dell’Anno, S. De Siena, F. Illuminati, “Multiphoton quantum optics and quantum state engineering,” Phys. Rep. 428, 53–168 (2006). [CrossRef]
  27. A. Serafini, F. Illuminati, M. G. A. Paris, S. De Siena, “Entanglement and purity of two-mode Gaussian states in noisy channels,” Phys. Rev. A 69, 022318 (2004). [CrossRef]
  28. F. Dell’Anno, S. De Siena, L. Albano, F. Illuminati, “Continuous-variable quantum teleportation with non-Gaussian resources,” Phys. Rev. A 76, 022301 (2007). [CrossRef]
  29. F. Dell’Anno, S. De Siena, G. Adesso, F. Illuminati, “Teleportation of squeezing: Optimization using non-Gaussian resources,” Phys. Rev. A 82, 062329 (2010). [CrossRef]
  30. Y. P. Niu, S. Q. Gong, R. X. Li, Z. Z. Xu, X. Y. Liang, “Giant Kerr nonlinearity induced by interacting dark resonances,” Opt. Lett. 30, 3371–3373 (2005). [CrossRef]
  31. Y. Wu, X. X. Yang, “Giant Kerr nonlinearities and solitons in a crystal of molecular magnets,” Appl. Phys. Lett. 91, 094104 (2007). [CrossRef]
  32. D. D. Yavuz, D. E. Sikes, “Giant Kerr nonlinearities using refractive-index enhancement,” Phys. Rev. A 81, 035804 (2010). [CrossRef]
  33. Y. Wu, L. L. Wen, Y. F. Zhu, “Efficient hyper-Raman scattering in resonant coherent media,” Opt. Lett. 28, 631–633 (2003). [CrossRef] [PubMed]
  34. G. Simon, B. Hehlen, E. Courtens, E. Longueteau, R. Vacher, “Hyper-Raman scattering from vitreous boron oxide: Coherent enhancement of the boson peak,” Phys. Rev. Lett. 96, 105502 (2006). [CrossRef] [PubMed]
  35. Y. Wu, J. Saldana, Y. F. Zhu, “Large enhancement of four-wave mixing by suppression of photon absorption from electromagnetically induced transparency,” Phys. Rev. A 67, 013811 (2003). [CrossRef]
  36. Y. P. Zhang, U. Khadka, B. Anderson, M. Xiao, “Controlling four-wave and six-wave mixing processes in multilevel atomic systems,” Appl. Phys. Lett. 91, 221108 (2007). [CrossRef]
  37. Y. P. Zhang, B. Anderson, A. W. Brown, M. Xiao, “Competition between two four-wave mixing channels via atomic coherence,” Appl. Phys. Lett. 91, 061113 (2007). [CrossRef]
  38. Y. P. Zhang, A. W. Brown, M. Xiao, “Opening four-wave mixing and six-wave mixing channels via dual electromagnetically induced transparency windows,” Phys. Rev. Lett. 99, 123603 (2007). [CrossRef] [PubMed]
  39. E. Paspalakis, P. L. Knight, “Phase control of spontaneous emission,” Phys. Rev. Lett. 81, 293–296 (1998). [CrossRef]
  40. S. Evangelou, V. Yannopapas, E. Paspalakis, “Modifying free-space spontaneous emission near a plasmonic nanostructure,” Phys. Rev. A 83, 023819 (2011). [CrossRef]
  41. J. H. Wu, A. J. Li, Y. Ding, Y. C. Zhao, J. Y. Gao, “Control of spontaneous emission from a coherently driven four-level atom,” Phys. Rev. A 72, 023802 (2005). [CrossRef]
  42. J. Evers, S. Qamar, M. S. Zubairy, “Atom localization and center-of-mass wave-function determination via multiple simultaneous quadrature measurements,” Phys. Rev. A 75, 053809 (2007). [CrossRef]
  43. V. Ivanov, Y. Rozhdestvensky, “Two-dimensional atom localization in a four-level tripod system in laser fields,” Phys. Rev. A 81, 033809 (2010). [CrossRef]
  44. R. G. Wan, J. Kou, L. Jiang, Y. Jiang, J. Y. Gao, “Two-dimensional atom localization via controlled spontaneous emission from a driven tripod system,” J. Opt. Soc. Am. B 28, 10–17 (2011). [CrossRef]
  45. R. G. Wan, J. Kou, L. Jiang, Y. Jiang, J. Y. Gao, “Two-dimensional atom localization via quantum interference in a coherently driven inverted-Y system,” Opt. Commun. 284, 985–990 (2011). [CrossRef]
  46. R. G. Wan, J. Kou, L. Jiang, Y. Jiang, J. Y. Gao, “Two-dimensional atom localization via interacting double-dark resonances,” J. Opt. Soc. Am. B 28, 622–628 (2011). [CrossRef]
  47. P. Meystre, M. Sargent, Elements of Quantum Optics (Springer-Verlag, Berlin, 1999).
  48. J. H Li, “Control of spontaneous emission spectra via an external coherent magnetic field in a cycle-configuration atomic medium,” Eur. Phys. J. D 42, 467–473 (2007). [CrossRef]
  49. C. L. Wang, Z. H. Kang, S. C. Tian, J. H. Wu, “Control of spontaneous emission from a micro-wave driven atomic system,” Opt. Express 20, 3509–3518 (2012), http://www.opticsinfobase.org/abstract.cfm?URI=oe-20-4-3509 . [CrossRef] [PubMed]
  50. J. T. Chang, J. Evers, M. O. Scully, M. S. Zubairy, “Measurement of the separation between atoms beyond diffraction limit,” Phys. Rev. A 73, 031803(R) (2006). [CrossRef]
  51. C. L. Ding, J. H. Li, X. X. Yang, D. Zhang, H. Xiong, “Proposal for efficient two-dimensional atom localization using probe absorption in a microwave-driven four-level atomic system,” Phys. Rev. A 84, 043840 (2011). [CrossRef]
  52. J. H. Li, R. Yu, M. Liu, C. L. Ding, X. X. Yang, “Efficient two-dimensional atom localization via phase-sensitive absorption spectrum in a radio-frequency-driven four-level atomic system,” Phys. Lett. A 375, 3978–3985 (2011). [CrossRef]
  53. R. G. Wan, T. Y. Zhang, “Two-dimensional sub-half-wavelength atom localization via controlled spontaneous emission,” Opt. Express 19, 25823–25832 (2012), http://www.opticsinfobase.org/abstract.cfm?URI=oe-19-25-25823 . [CrossRef] [PubMed]
  54. Z. P. Wang, B. L. Yu, J. Zhu, Z. G. Cao, S. L. Zhen, X. Q. Wu, F. Xu, “Atom localization via controlled spontaneous emission in a five-level atomic system,” Ann. Phys. (New York) 327, 1132–1145 (2012). [CrossRef]
  55. D. A. Steck, Rubidium 87 D line data, available online at http://steck.us/alkalidata .
  56. J. Vanier, A. Godone, F. Levi, “Coherent population trapping in cesium: Dark lines and coherent microwave emission,” Phys. Rev. A 58, 2345–2358 (1998), and references therein. [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited