OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 7 — Mar. 26, 2012
  • pp: 7901–7914

Purcell effect in photonic crystal microcavities embedding InAs/InP quantum wires

Josep Canet-Ferrer, Luis J. Martínez, Ivan Prieto, Benito Alén, Guillermo Muñoz-Matutano, David Fuster, Yolanda González, María L. Dotor, Luisa González, Pablo A. Postigo, and Juan P. Martínez-Pastor  »View Author Affiliations

Optics Express, Vol. 20, Issue 7, pp. 7901-7914 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (2073 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The spontaneous emission rate and Purcell factor of self-assembled quantum wires embedded in photonic crystal micro-cavities are measured at 80 K by using micro-photoluminescence, under transient and steady state excitation conditions. The Purcell factors fall in the range 1.1 – 2 despite the theoretical prediction of ≈15.5 for the figure of merit. We explain this difference by introducing a polarization dependence on the cavity orientation, parallel or perpendicular with respect to the wire axis, plus spectral and spatial detuning factors for the emitters and the cavity modes, taking in account the finite size of the quantum wires.

© 2012 OSA

OCIS Codes
(020.5580) Atomic and molecular physics : Quantum electrodynamics
(230.0230) Optical devices : Optical devices
(230.5590) Optical devices : Quantum-well, -wire and -dot devices
(250.0250) Optoelectronics : Optoelectronics
(050.5298) Diffraction and gratings : Photonic crystals

ToC Category:

Original Manuscript: September 22, 2011
Revised Manuscript: October 28, 2011
Manuscript Accepted: December 13, 2011
Published: March 21, 2012

Josep Canet-Ferrer, Luis J. Martínez, Ivan Prieto, Benito Alén, Guillermo Muñoz-Matutano, David Fuster, Yolanda González, María L. Dotor, Luisa González, Pablo A. Postigo, and Juan P. Martínez-Pastor, "Purcell effect in photonic crystal microcavities embedding InAs/InP quantum wires," Opt. Express 20, 7901-7914 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. Y. Tanaka, T. Asano, S. Noda, “Design of photonic crystal nanocavity with Q-Factor of ~109,” J. Lightwave Technol. 26(11), 1532–1539 (2008). [CrossRef]
  2. S. Strauf, “Quantum optics: Towards efficient quantum sources,” Nat. Photonics 4(3), 132–134 (2010). [CrossRef]
  3. T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, D. G. Deppe, “Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature 432(7014), 200–203 (2004). [CrossRef] [PubMed]
  4. E. M. Purcell, “Spontaneous emission probabilities at radio frequencies,” Phys. Rev. 69, 681 (1946).
  5. H. Y. Ryu, M. Notomi, “Enhancement of spontaneous emission from the resonant modes of a photonic crystal slab single-defect cavity,” Opt. Lett. 28(23), 2390–2392 (2003). [CrossRef] [PubMed]
  6. A. Badolato, K. Hennessy, M. Atatüre, J. Dreiser, E. Hu, P. M. Petroff, A. Imamoglu, “Deterministic coupling of single quantum dots to single nanocavity modes,” Science 308(5725), 1158–1161 (2005). [CrossRef] [PubMed]
  7. T. Baba, T. Hamano, F. Koyama, K. Iga, “Spontaneous emission factor of a microcavity DBR surface-emitting laser,” IEEE J. Quantum Electron. 27(6), 1347–1358 (1991). [CrossRef]
  8. D. C. Unitt, A. J. Bennett, P. Atkinson, D. A. Ritchie, A. J. Shields, “Polarization control of quantum dot single-photon sources via a dipole-dependent Purcell effect,” Phys. Rev. B 72(3), 033318 (2005). [CrossRef]
  9. J. Canet-Ferrer, G. Muñoz-Matutano, D. Fuster, B. Alen, Y. González, L. González, J. P. Martinez Pastor, “Localization effects on recombination dynamics in InAs/InP self-assembled Quantum Wires emitting at 1.5μm,” J. Appl. Phys. 110, 103502 (2011).
  10. C. Seassal, X. Letartre, J. Brault, M. Gendry, P. Pottier, P. Viktorovitch, O. Piquet, P. Blondy, D. Cros, O. Marty, “InAs quantum wires in InP-based microdisks: Mode identification and continuous wave room temperature laser operation,” J. Appl. Phys. 88(11), 6170–6174 (2000). [CrossRef]
  11. K. A. Atlasov, K. F. Karlsson, E. Deichsel, A. Rudra, B. Dwir, E. Kapon, “Site-controlled single quantum wire integrated into a photonic-crystal membrane microcavity,” Appl. Phys. Lett. 90(15), 153107 (2007). [CrossRef]
  12. K. A. Atlasov, M. Calic, K. F. Karlsson, P. Gallo, A. Rudra, B. Dwir, E. Kapon, “Photonic-crystal microcavity laser with site-controlled quantum-wire active medium,” Opt. Express 17(20), 18178–18183 (2009). [CrossRef] [PubMed]
  13. D. Fuster, J. Martinez-Pastor, L. Gonzalez, Y. Gonzalez, “Exciton recombination dynamics in InAs/InP self-assembled quantum wires,” Phys. Rev. B 71(20), 205329 (2005). [CrossRef]
  14. B. Alén, J. Martinez-Pastor, A. Garcia-Cristobal, L. Gonzalez, J. M. Garcia, “Optical transitions and excitonic recombination in InAs/InP self-assembled quantum wires,” Appl. Phys. Lett. 78(25), 4025–4027 (2001). [CrossRef]
  15. S. H. Kim, G. H. Kim, S. K. Kim, H. Y. Park, Y. H. Lee, S. B. Kim, “Characteristics of a stick waveguide resonator in a two-dimensional photonic crystal slab,” J. Appl. Phys. 95(2), 411–416 (2004). [CrossRef]
  16. D. Fuster, M. U. González, L. González, Y. González, T. Ben, A. Ponce, S. I. Molina, J. Martínez-Pastor, “Size control of InAs/InP(001) quantum wires by tailoring P/As exchange,” Appl. Phys. Lett. 85(8), 1424–1426 (2004). [CrossRef]
  17. A. Mazuelas, L. González, J. M. García, Y. González, T. Schuelli, C. Priester, H. T. Metzger, “Strain determination in MBE-grown InAs quantum wires on InP,” Phys. Rev. B 73(4), 045312 (2006). [CrossRef]
  18. L. J. Martínez, I. Prieto, B. Alén, P. A. Postigo, “Fabrication of high quality factor photonic crystal microcavities in InAsP/InP membranes combining reactive ion beam etching and reactive etching,” J. Vac. Sci. Technol. B 27(4), 1801–1804 (2009). [CrossRef]
  19. L. J. Martínez, B. Alén, I. Prieto, D. Fuster, L. González, Y. González, M. L. Dotor, P. A. Postigo, “Room temperature continuous wave operation in a photonic crystal microcavity laser with a single layer of InAs/InP self-assembled quantum wires,” Opt. Express 17(17), 14993–15000 (2009). [CrossRef] [PubMed]
  20. A. Meldrum, P. Bianucci, F. Marsiglio, “Modification of ensemble emission rates and luminescence spectra for inhomogeneously broadened distributions of quantum dots coupled to optical microcavities,” Opt. Express 18(10), 10230–10246 (2010). [CrossRef] [PubMed]
  21. J. M. Gérard, B. Gayral, “InAs quantum dots: artificial atoms for solid-state cavity-quantum electrodynamics,” Physica E 9(1), 131–139 (2001). [CrossRef]
  22. S. Reitzenstein, A. Forchel, “Quantum dot micropillars,” J. Phys. D Appl. Phys. 43(3), 033001 (2010). [CrossRef]
  23. K. A. Atlasov, “Light control and microcavity lasers based on quantum wires integrated in photonic-crystal cavities,” Thesis in Ecole Polytechnique Fédérale de Lausanne, no. 4359 (2009).
  24. M. Bayer, T. L. Reinecke, F. Weidner, A. Larionov, A. McDonald, A. Forchel, “Inhibition and Enhancement of the Spontaneous Emission of Quantum Dots in Structured Microresonators,” Phys. Rev. Lett. 86(14), 3168–3171 (2001). [CrossRef] [PubMed]
  25. J. M. Gérard, B. Sermage, B. Gayral, B. Legrand, E. Costard, V. Thierry-Mieg, “Enhanced spontaneous emission by quantum boxes in a monolithic optical microcavity,” Phys. Rev. Lett. 81(5), 1110–1113 (1998). [CrossRef]
  26. G. Gayral, J. M. Gerard, “Photoluminescence experiment on quantum dots embedded in a large Purcell-factor microcavity,” Phys. Rev. B 78(23), 235306 (2008). [CrossRef]
  27. B. Gayral, “Controling the spontaneous emission dynamics in semiconductor microcavities: an experimental approach, PhD thesis” Ann. Phys. Fr. 26, 1–133 (2001).
  28. M. Munsch, A. Mosset, A. Auffèves, S. Seidelin, J. P. Poizat, J.-M. Gérard, A. Lemaître, I. Sagnes, P. Senellart, “Continuous-wave versus time-resolved measurements of Purcell-factors for quantum dots in semiconductor microcavities,” Phys. Rev. B 80(11), 115312 (2009). [CrossRef]
  29. J. M. Gérard, B. Legrand, B. Gayral, E. Costard, B. Semage, R. Kuszelewicz, D. Barrier, V. Thierry-Mieg, T. Rivera, J. Y. Marzin, “InAs quantum boxes in GaAs/AlAs pillar microcavities: from spectroscopic investigations to spontaneous emission control,” Physica E 2(1-4), 804–808 (1998). [CrossRef]
  30. M. Kaniber, A. Laucht, A. Neumann, J. M. Villas-Bôas, M. Bichler, M.-C. Amann, J. J. Finley, “Investigation of the nonresonant dot-cavity coupling in two-dimensional photonic crystal nanocavities,” Phys. Rev. B 77(16), 161303 (2008). [CrossRef]
  31. A. Kress, F. Hofbauer, N. Reinelt, H. J. Krenner, M. Bichler, D. Schuh, R. Meyer, G. Abstreiter, J. J. Finley, “Investigation of cavity modes and direct observation of Purcell enhancement in 2D photonic crystal defect microcavities,” Physica E 26(1-4), 351–355 (2005). [CrossRef]
  32. B. Alén, D. Fuster, G. Muñoz-Matutano, J. Martínez-Pastor, Y. González, J. Canet-Ferrer, L. González, “Exciton gas compression and metallic condensation in a single semiconductor quantum wire,” Phys. Rev. Lett. 101(6), 067405 (2008). [CrossRef] [PubMed]
  33. D. Fuster, “Crecimiento y caracterización de hilos cuánticos de Arseniuro de Indio sobre substratos de Fosfuro de Indio (InAs/InP)” Universitat de València (2005).
  34. K. Nozaki, S. Kita, T. Baba, “Room temperature continuous wave operation and controlled spontaneous emission in ultrasmall photonic crystal nanolaser,” Opt. Express 15(12), 7506–7514 (2007). [CrossRef] [PubMed]
  35. G. S. Solomon, M. Pelton, B. Gayral, B. Legrand, E. Costard, V. Thierry-Mieg, “Enhanced spontaneous emission by quantum boxes in a monolithic optical microcavity,” Phys. Rev. Lett. 86, 1110–1113 (1998).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited