OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 7 — Mar. 26, 2012
  • pp: 7954–7965

Photonic-crystal membranes for optical detection of single nano-particles, designed for biosensor application

Jon Olav Grepstad, Peter Kaspar, Olav Solgaard, Ib-Rune Johansen, and Aasmund S. Sudbø  »View Author Affiliations


Optics Express, Vol. 20, Issue 7, pp. 7954-7965 (2012)
http://dx.doi.org/10.1364/OE.20.007954


View Full Text Article

Enhanced HTML    Acrobat PDF (4900 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A sensor designed to detect bio-molecules is presented. The sensor exploits a planar 2D photonic crystal (PC) membrane with sub-micron thickness and through holes, to induce high optical fields that allow detection of nano-particles smaller than the diffraction limit of an optical microscope. We report on our design and fabrication of a PC membrane with a nano-particle trapped inside. We have also designed and built an imaging system where an optical microscope and a CCD camera are used to take images of the PC membrane. Results show how the trapped nano-particle appears as a bright spot in the image. In a first experimental realization of the imaging system, single particles with a radius of 75 nm can be detected.

© 2012 OSA

OCIS Codes
(220.0220) Optical design and fabrication : Optical design and fabrication
(280.4788) Remote sensing and sensors : Optical sensing and sensors

ToC Category:
Sensors

History
Original Manuscript: January 19, 2012
Revised Manuscript: March 15, 2012
Manuscript Accepted: March 16, 2012
Published: March 21, 2012

Virtual Issues
Vol. 7, Iss. 5 Virtual Journal for Biomedical Optics

Citation
Jon Olav Grepstad, Peter Kaspar, Olav Solgaard, Ib-Rune Johansen, and Aasmund S. Sudbø, "Photonic-crystal membranes for optical detection of single nano-particles, designed for biosensor application," Opt. Express 20, 7954-7965 (2012)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-7-7954


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. B. Bohunicky and S. A. Mousa, “Biosensors: the new wave in cancer diagnosis,” Nanotech. Sci. Appl.4, 1–10 (2010).
  2. T. Reichlin, W. Hochholzer, S. Bassetti, S. Steuer, C. Stelzig, S. Hartwiger, S. Biedert, N. Schaub, C. Buerge, M. Potocki, M. Noveanu, T. Breidthardt, R. Twerenbold, K. Winkler, R. Bingisser, and C. Mueller, “Early diagnosis of myocardial infarction with sensitive cardiac troponinassays,” N. Engl. J. Med.361, 858–867 (2009). [CrossRef] [PubMed]
  3. P. Stefaniuk, J. Cianciara, and A. Wiercinska-Drapalo, “Present and future possibilities for early diagnosis of hepatocellular carcinoma,” World J. Gastroenterol.16, 418–424 (2010). [CrossRef] [PubMed]
  4. M. F. Pineda, L. L. Chan, T. Kuhlenschmidt, C. J. Choi, M. Kuhlenschmidt, and B. T. Cunningham, “Rapid specific and label-free detection of porcine rotavirus using photonic crystal biosensors,” IEEE Sens. J.9, 470–477 (2009). [CrossRef]
  5. A. A. Yanik, M. Huang, O. Kamohara, A. Artar, T. W. Geisbert, J. H. Connor, and H. Altug, “An optofluidic nanoplasmonic biosensor for direct detection of live viruses from biological media,” Nano Lett.10, 4962–4969 (2010). [CrossRef]
  6. Product info: http://www.axis-shield.com , visited March 15, 2012.
  7. D. W. G. Morrison, M. R. Dokmeci, U. Demirci, and A. Khademhosseini, Biomedical Nanostructures (John Wiley & Sons, Inc., 2008). Chap. 17.
  8. L. Li, “Recent development of micromachined biosensors,” IEEE Sens. J.11, 305–311 (2011). [CrossRef]
  9. Y. Cui, Q. Wei, H. Park, and C. M. Lieber, “Nanowire nanosensors for highly sensitive and selective detection of biological and chemical species,” Science293, 1289–1292 (2001). [CrossRef] [PubMed]
  10. Y. L. Bunimovich, Y. S. Shin, W. Yeo, M. Amori, G. Kwong, and J. R. Heath, “Quantitative real-time measurements of dna hybridization with alkylated nonoxidized silicon nanowires in electrolyte solution,” J. Am. Chem. Soc.128, 16323–16331 (2006). [CrossRef] [PubMed]
  11. C. A. Savran, S. M. Knudsen, A. D. Ellington, and S. R. Manalis, “Micromechanical detection of proteins using aptamer-based receptor molecules,” Anal. Chem.76, 3194–3198 (2004). [CrossRef] [PubMed]
  12. J. Fritz, M. K. Baller, H. P. Lang, H. Rothuizen, P. Vettiger, E. Meyer, H. J. Gntherodt, C. Gerber, and J. K. Gimzewski, “Translating biomolecular recognition into nanomechanics,” Science288, 316–318 (2000). [CrossRef] [PubMed]
  13. A. K. Gupta, P. R. Nair, D. Akin, M. R. Ladisch, S. Broyles, M. A. Alam, and R. Bashir, “Anomalous resonance in a nanomechanical biosensor,” Proc. Natl. Acad. Sci. U. S. A.103, 13362–13367 (2006). [CrossRef] [PubMed]
  14. E. Stern, R. Wagner, F. J. Sigworth, R. Breaker, T. M. Fahmy, and M. A. Reed, “Importance of the debye screening length on nanowire field effect transistor sensors,” Nano Lett.7, 3405–3409 (2007). [CrossRef] [PubMed]
  15. J. Lee, K. Icoz, A. Roberts, A. D. Ellington, and C. A. Savran, “Diffractometric detection of proteins using microbead-based rolling circle amplification,” Anal. Chem.82, 197–202 (2010). [CrossRef]
  16. X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: a review,” Anal. Chim. Acta620, 8 – 26 (2008). [CrossRef] [PubMed]
  17. F. Hsiao and C. Lee, “Computational study of photonic crystals nano-ring resonator for biochemical sensing,” IEEE Sens. J.10, 1185–1191 (2010). [CrossRef]
  18. J. G. Ruperez, V. Toccafondo, M. J. Bañuls, J. G. Castelló, A. Griol, S. Peransi-Llopis, and A. Maquieira, “Label-free antibody detection using band edge fringes in soi planar photonic crystal waveguides in the slow-light regime,” Opt. Express18, 24276–24286 (2010). [CrossRef]
  19. M. R. Lee and P. M. Fauchet, “Nanoscale microcavity sensor for single particle detection,” Opt. Lett.32, 3284–3286 (2007). [CrossRef] [PubMed]
  20. S. Zlatanovic, L. W. Mirkarimi, M. M. Sigalas, M. A. Bynum, E. Chow, K. M. Robotti, G. W. Burr, S. Esener, and A. Grot, “Photonic crystal microcavity sensor for ultracompact monitoring of reaction kinetics and protein concentration,” Sens. Actuator B141, 13–19 (2009). [CrossRef]
  21. Q. Quan, I. B. Burgess, S. K. Y. Tang, D. L. Floyd, and M. Loncar, “High-q, low index-contrast polymeric photonic crystal nanobeam cavities,” Opt. Express19, 22191–22197 (2011). [CrossRef] [PubMed]
  22. S. Lal, S. Link, and N. J. Halas, “Nano-optics from sensing to waveguiding,” Nat. Photonics1, 641–648 (2007). [CrossRef]
  23. S. W. Bishnoi, C. J. Rozell, C. S. Levin, M. K. Gheith, B. R. Johnson, D. H. Johnson, and N. J. Halas, “All-optical nanoscale ph meter,” Nano Lett.6, 1687–1692 (2006). [CrossRef] [PubMed]
  24. J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater.7, 442–453 (2008). [CrossRef] [PubMed]
  25. J. C. Yang, J. Ji, J. M. Hogle, and D. N. Larson, “Multiplexed plasmonic sensing based on small-dimension nanohole arrays and intensity interrogation,” Biosens. Bioelectron.24, 2334–2338 (2009). [CrossRef] [PubMed]
  26. A. Lesuffleur, H. Im, N.-C. Lindquist, and S. H. Oh, “Periodic nanohole arrays with shape-enhanced plasmon resonance as real-time biosensors,” Appl. Phys. Lett.90, 243110 (2007). [CrossRef]
  27. M. E. Stewart, N. H. Mack, V. Malyarchuk, J. A. N. T. Soares, T. W. Lee, S. K. Gray, R. G. Nuzzo, and J. A. Rogers, “Quantitative multispectral biosensing and 1d imaging using quasi-3d plasmonic crystals,” Proc. Natl. Acad. Sci. U. S. A.103, 17143–17148 (2006). [CrossRef] [PubMed]
  28. A. G. Brolo, R. Gordon, B. Leathem, and K. L. Kavanagh, “Surface plasmon sensor based on the enhanced light transmission through arrays of nanoholes in gold films,” Langmuir20, 4813–4815 (2004). [CrossRef]
  29. M. Kanskar, P. Paddon, V. Pacradouni, R. Morin, A. Busch, J. F. Young, S. R. Johnson, J. MacKenzie, and T. Tiedje, “Observation of leaky slab modes in an air-bridged semiconductor waveguide with a two-dimensional photonic lattice,” Appl. Phys. Lett.70, 1438–1440 (1997). [CrossRef]
  30. S. Fan and J. D. Joannopoulos, “Analysis of guided resonances in photonic crystal slabs,” Phys. Rev. B65, 235112 (2002). [CrossRef]
  31. M. E. Beheiry, V. Liu, S. Fan, and O. Levi, “Sensitivity enhancement in photonic crystal slab biosensors,” Opt. Express18, 22702–22714 (2010). [CrossRef] [PubMed]
  32. Commercially available software supplied by KJ Innovation, http://software.kjinnovation.com/GD-Calc.html visited Sept. 15, 2011.
  33. Z. Popovic and B. D. Popovic, Introductory Electromagnetics (Prentice Hall, Inc., 2000).
  34. M. J. Banuls, V. Gonzlez-Pedro, C. A. Barrios, R. Puchades, and A. Maquieira, “Selective chemical modification of silicon nitride/silicon oxide nanostructures to develop label-free biosensors,” Biosens. Bioelectron.25, 1460–1466 (2010). [CrossRef]
  35. C. F. Bohren and D. R. Huffman, Absorbtion and Scattering of Light by Small Particles (John Wiley and Sons, Inc., 1998). Chap. 5. [CrossRef]
  36. J. Vrs, “The density and refractive index of adsorbing protein layers,” Biophys. J.87, 553–561 (2004). [CrossRef]
  37. M. Huang, A. A. Yanik, T. Y. Chang, and H. Altug, “Sub-wavelength nanofluidics in photonic crystal sensors,” Opt. Express17, 24224–24233 (2009). [CrossRef]
  38. M. G. Hale and M. R. Querry, “Optical constants of water in the 200-nm to 200-μm wavelength region,” Appl. Optics12, 555–563 (1973). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited