OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 7 — Mar. 26, 2012
  • pp: 7973–7993

MOCRA: a Monte Carlo code for the simulation of radiative transfer in the atmosphere

Margherita Premuda, Elisa Palazzi, Fabrizio Ravegnani, Daniele Bortoli, Samuele Masieri, and Giorgio Giovanelli  »View Author Affiliations

Optics Express, Vol. 20, Issue 7, pp. 7973-7993 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (1457 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



This paper describes the radiative transfer model (RTM) MOCRA (MOnte Carlo Radiance Analysis), developed in the frame of DOAS (Differential Optical Absorption Spectroscopy) to correctly interpret remote sensing measurements of trace gas amounts in the atmosphere through the calculation of the Air Mass Factor. Besides the DOAS-related quantities, the MOCRA code yields: 1- the atmospheric transmittance in the vertical and sun directions, 2- the direct and global irradiance, 3- the single- and multiple- scattered radiance for a detector with assigned position, line of sight and field of view. Sample calculations of the main radiometric quantities calculated with MOCRA are presented and compared with the output of another RTM (MODTRAN4). A further comparison is presented between the NO2 slant column densities (SCDs) measured with DOAS at Evora (Portugal) and the ones simulated with MOCRA. Both comparisons (MOCRA-MODTRAN4 and MOCRA-observations) gave more than satisfactory results, and overall make MOCRA a versatile tool for atmospheric radiative transfer simulations and interpretation of remote sensing measurements.

© 2012 OSA

OCIS Codes
(000.5490) General : Probability theory, stochastic processes, and statistics
(010.5620) Atmospheric and oceanic optics : Radiative transfer

ToC Category:
Atmospheric and Oceanic Optics

Original Manuscript: August 1, 2011
Revised Manuscript: January 2, 2012
Manuscript Accepted: January 2, 2012
Published: March 22, 2012

Margherita Premuda, Elisa Palazzi, Fabrizio Ravegnani, Daniele Bortoli, Samuele Masieri, and Giorgio Giovanelli, "MOCRA: a Monte Carlo code for the simulation of radiative transfer in the atmosphere," Opt. Express 20, 7973-7993 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. Lenoble, ed., “Standard Procedures to Compute Atmospheric Radiative Transfer in a Scattering Atmosphere - Volume I, International Association of Meteorology and Atmospheric Physics (IAMAP), ” Boulder, Colorado, USA (1977).
  2. Y. Fouquart, W. M. Irvine, and J. Lenoble, eds., “Standard Procedures to Compute Atmospheric Radiative Transfer in a Scattering Atmosphere - Volume II, International Association of Meteorology and Atmospheric Physics (IAMAP),” Boulder, Colorado, USA (1980).
  3. K. Stamnes, S.-C. Tsay, W. Wiscombe, K. Jayaweera, “Numerically stable algorithm for discrete-ordinate-method radiative transfer in multiple scattering and emitting layered media,” Appl. Opt. 27(12), 2502–2509 (1988). [CrossRef] [PubMed]
  4. G. N. Plass, G. W. Kattawar, “Monte carlo calculations of light scattering from clouds,” Appl. Opt. 7(3), 415–419 (1968). [CrossRef] [PubMed]
  5. G. N. Plass, G. W. Kattawar, “Radiative transfer in an atmosphere-ocean system,” Appl. Opt. 8(2), 455–466 (1969). [CrossRef] [PubMed]
  6. E. Tinet, S. Avrillier, J. M. Tualle, “Fast semianalytical Monte Carlo simulation for time-resolved light propagation in turbid media,” J. Opt. Soc. Am. A 13(9), 1903–1915 (1996). [CrossRef]
  7. A. De Matteis, R. Simonini, “A New Monte Carlo Approach to the Adjoint Boltzmann Equation,” Nucl. Sci. Eng. 65, 93–105 (1978).
  8. A. De Matteis, R. Simonini, “A Monte Carlo Biasing Scheme for the Adjoint Photon Transport,” Nucl. Sci. Eng. 67, 309–316 (1978).
  9. D. G. Collins, W. G. Blättner, M. B. Wells, H. G. Horak, “Backward monte carlo calculations of the polarization characteristics of the radiation emerging from spherical-shell atmospheres,” Appl. Opt. 11(11), 2684–2696 (1972). [CrossRef] [PubMed]
  10. W. G. Blättner, H. G. Horak, D. G. Collins, M. B. Wells, “Monte carlo studies of the sky radiation at twilight,” Appl. Opt. 13(3), 534–547 (1974). [CrossRef] [PubMed]
  11. B. Mayer, S. W. Hoch, C. D. Whiteman, “Validating the MYSTIC three-dimensional radiative transfer model with observations from the complex topography of Arizona's Meteor Crater,” Atmos. Chem. Phys. Discuss. 10(5), 13373–13405 (2010), doi:. [CrossRef]
  12. J. F. Noxon, “Nitrogen dioxide in the stratosphere and troposphere measured by ground-based absorption spectroscopy,” Science 189(4202), 547–549 (1975). [CrossRef] [PubMed]
  13. U. Platt, D. Perner, H. W. Patz, “Simultaneous measurement of atmospheric CH2O, O3 e NO2 by differential optical absorption,” J. Geophys. Res. 84(C10), 6329–6335 (1979). [CrossRef]
  14. U. Platt, D. Perner, “Direct measurement of atmospheric CH2O, HNO2, O3, NO2, and SO2 by differential optical absorption in the near UV,” J. Geophys. Res. 85(C12), 7453–7458 (1980). [CrossRef]
  15. H. K. Roscoe, P. V. Johnston, M. Van Roozendael, A. Richter, A. Sarkissian, J. Roscoe, K. E. Preston, J.-C. Lambert, C. Hermans, W. DeCuyper, S. Dzienus, T. Winterrath, J. Burrows, F. Goutail, J.-P. Pommereau, E. D’Almeida, J. Hottier, C. Coureul, R. Didier, I. Pundt, L. M. Bartlett, C. T. McElroy, J. E. Kerr, A. Elokhov, G. Giovanelli, F. Ravegnani, M. Premuda, I. Kostadinov, F. Erle, T. Wagner, K. Pfeilsticker, M. Kenntner, L. C. Marquard, M. Gil, O. Puentedura, M. Yela, D. W. Arlander, B. A. Kastad Hoiskar, C. W. Tellefsen, K. Karlsen Tornkvist, B. Heese, R. L. Jones, S. R. Aliwell, R. A. Freshwater, “Slant column measurements of O3 and NO2 during NDSC intercomparison of zenith-sky UV-visible spectrometer in June 1996,” J. Atmos. Chem. 32(2), 281–314 (1999).
  16. A. Petritoli, G. Giovanelli, I. Kostadinov, F. Ravegnani, D. Bortoli, P. Bonasoni, F. Evangelisti, U. Bonafe, F. Calzolari, “Tropospheric and stratospheric NO2 amount deduced by slant column measurements at Mt. Cimone Station,” Adv. Space Res. 29(11), 1691–1695 (2002). [CrossRef]
  17. L. M. Perliski, S. Solomon, “On the Evaluation of Air Mass Factors for Atmospheric Near-Ultraviolet and Visible Absorptiion Spectroscopy,” J. Geophys. Res. 98(D6), 10363–10374 (1993). [CrossRef]
  18. S. Solomon, A. Schmeltekopf, R. W. Sanders, “On the interpretation of zenith sky absorption measurements,” J. Geophys. Res. 92(D7), 8311–8319 (1987). [CrossRef]
  19. J. Pukıte, S. Kühl, T. Deutschmann, W. Wilms-Grabe, C. Friedeburg, U. Platt, and T. Wagner, “Retrieval of stratospheric trace gases from SCIAMACHY limb measurements,” Proceedings of the First Atmospheric Science Conference, 8–12 May, ESA/ESRIN, Frascati, Italy, ESA SP-628, (2006). http://earth.esa.int/workshops/atmos2006/participants/1148/paper proc Frasc 2.pdf
  20. S. Kühl, J. Puķīte, T. Deutschmann, U. Platt, T. Wagner, “SCIAMACHY Limb Measurements of NO2, BrO and OClO, Retrieval of vertical profiles: Algorithm, first results, sensitivity and comparison studies,” Adv. Space Res. 42(10), 1747–1764 (2008). [CrossRef]
  21. J. Puķīte, S. Kühl, T. Deutschmann, U. Platt, T. Wagner, “Accounting for the effect of horizontal gradients in limb measurements of scattered sunlight,” Atmos. Chem. Phys. 8(12), 3045–3060 (2008). [CrossRef]
  22. G. Hönninger, C. von Friedeburg, U. Platt, “Multi axis differential optical absorption spectroscopy (MAX-DOAS),” Atmos. Chem. Phys. 4(1), 231–254 (2004), http://www.atmos-chem-phys.net/4/231/2004/acp-4-231-2004.pdf . [CrossRef]
  23. A. Petritoli, F. Ravegnani, G. Giovanelli, D. Bortoli, U. Bonafè, I. Kostadinov, A. Oulanovsky, “Off-axis measurements of atmospheric trace gases by use of an airborne ultraviolet-visible spectrometer,” Appl. Opt. 41(27), 5593–5599 (2002). [CrossRef] [PubMed]
  24. G. Giovanelli, E. Palazzi, A. Petritoli, D. Bortoli, I. Kostadinov, F. Margelli, S. Pagnutti, M. Premuda, F. Ravegnani, G. Trivellone, “Perspectives of 2D and 3D mapping of Atmospheric Pollutants over Urban Areas by means of airborne DOAS Spectrometer,” Ann. Geophys. 49(1), 133–142 (2006).
  25. M. Premuda, S. Masieri, D. Bortoli, I. Kostadinov, A. Petritoli, G. Giovanelli, “Evaluation of vessel emissions in a lagoon area with ground based Multi axis DOAS measurements,” Atmos. Environ. 45(29), 5212–5219 (2011), doi:, http://dx.doi.org/10.1016/j.atmosenv.2011.05.067 . [CrossRef]
  26. E. Palazzi, A. Petritoli, G. Giovanelli, I. Kostadinov, D. Bortoli, F. Ravegnani, S. S. Sackey, “PROMSAR: A backward Monte Carlo spherical RTM for the analysis of DOAS remote sensing measurements,” Adv. Space Res. 36(5), 1007–1014 (2005). [CrossRef]
  27. T. Wagner, J. P. Burrows, T. Deutschmann, B. Dix, C. von Friedeburg, U. Frieß, F. Hendrick, K.-P. Heue, H. Irie, H. Iwabuchi, Y. Kanaya, J. Keller, C. A. McLinden, H. Oetjen, E. Palazzi, A. Petritoli, U. Platt, O. Postylyakov, J. Pukite, A. Richter, M. van Roozendael, A. Rozanov, V. Rozanov, R. Sinreich, S. Sanghavi, F. Wittrock, “Comparison of box-air-mass-factors and radiances for Multiple-Axis Differential Optical Absorption Spectroscopy (MAX-DOAS) geometries calculated from different UV/visible radiative transfer models,” Atmos. Chem. Phys. 7(7), 1809–1833 (2007). [CrossRef]
  28. E. Cupini, M. G. Borgia and M. Premuda, Il codice PREMAR per la simulazione Montecarlo del trasporto della radiazione nell’atmosfera. (RT/INN/97/5. 1997).
  29. E. Cupini, G. Ferro, N. Ferrari, Monte Carlo Analysis of Radiative Transport in Oceanographic Lidar Measurements. (ENEA/RT/INN/2001/7, 2001).
  30. A. Berk, L. S. Bernstein, and D. C. Robertson, “MODTRAN: a moderate resolution model for LOWTRAN7,” Geophysics Laboratory, Air Force Systems Command, United States Air Force, Hanscom AFB, MA (1989).
  31. F. Kneizys, D. Robertson, L. W. Abreu, P. Acharya, G. P. Anderson, L. S. Rothman, J. H. Chetwynd, J. E. A. Selby, E. P. Shettle, W. O. Gallery, A. Berk, S. A. Clough, and L. S. Bernstein, “The MODTRAN 2/3 Report and LOWTRAN7 MODEL,” Phillips Laboratory, Geophysics Directorate, Hanscom AFB, MA (1996).
  32. P. Acharya, S. M. Adler-Golden, G. P. Anderson, A. Berk, L. S. Bernstein, J. H. Chetwynd, et al., “Modtran version 3.7/4.0 user’s manual,” Air Force Research Laboratory, Space Vehicles Directorate, Air Force MATERIEL Command, Hanscom AFB, MA (1998).
  33. A. Berk, G. P. Anderson, P. K. Acharya, J. H. Chetwynd, L. Bernstein, and E. P. Shettle, “MODTRAN4 user’s manual,” Air Force Research Laboratory, Space Vehicles Directorate, Air Force Materiel Command, Hanscom AFB, MA (1999).
  34. D. Nowak, L. Vuilleumier, C. N. Long, A. Ohmura, “Solar irradiance computations compared with observations at the Baseline Surface Radiation Network Payerne site,” J. Geophys. Res. 113(D14), D14206 (2008), doi:. [CrossRef]
  35. G. C. Pomraning, Radiation Hydrodynamics, Los Alamos National Laboratory Radiation Hydrodynamics Short Course Attendees, (1982), http://www.osti.gov/energycitations/servlets/purl/656708-zO5SF0/webviewable/656708.pdf
  36. R. L. Liboff, Kinetic Theory: Classical, Quantum and Relativistic Descriptions. (Prentice Hall, 1989).
  37. S. Chandrasekhar, Radiative Transfer, (Dover Publications, Inc., 1960).
  38. S. Chatigny, M. Morin, D. Asselin, Y. Painchaud, P. Beaudry, “Hybrid Monte Carlo for photon transport through optically thick scattering media,” Appl. Opt. 38(28), 6075–6086 (1999). [CrossRef] [PubMed]
  39. C. P. Robert and G. Casella, Monte Carlo Statistical Methods (Springer, 2004).
  40. A. De Matteis, S. Pagnutti, “Long-range Correlation-analysis of the Wichmann-Hill random number generator,” Stat. Comput. 3(2), 67–70 (1993). [CrossRef]
  41. A. De Matteis, S. Pagnutti, “Controlling correlations in parallel Monte Carlo,” Parallel Comput. 21(1), 73–84 (1995). [CrossRef]
  42. M. Premuda, “Montecarlo simulation of Radiative transfer in Atmospheric environments for problems arising from remote sensing measurements,” in Theory and Applications of Monte Carlo Simulations, S. Mordechai, ed. (INTECH, 2011).
  43. M. H. Kalos and P. A. Whitlock, Monte Carlo Methods. Volume I: Basics (John Wiley & Sons, 1986).
  44. M. Iqbal, An Introduction to Solar Radiation (Academic Press, 1983).
  45. M. Premuda, S. Masieri, D. Bortoli, F. Margelli, F. Ravegnani, A. Petritoli, I. Kostadinov, G. Giovanelli, E. Cupini, “A Monte Carlo simulation of radiative transfer in the atmosphere applied to ToTaL-DOAS,” Proc. SPIE 7475, 74751A, 74751A-12 (2009). [CrossRef]
  46. K. Y. Kondratyev, Radiation in the Atmosphere (Academic Press, 1969).
  47. F. X. Kneizys, S. A. Clough, E. P. Shettle, L. S. Rothmann and R. W. Fenn, “Linear Absorption and Scattering of Laser Beams,” Air Force Geophysical Laboratory, AFGL-TR-84 0265 (1984).
  48. F. X. Kneizys, E. P. Shettle, W. O. Gallery, J. H. Chetwynd, L. W. Abreu, J. E. A. Selby, S. A. Clough and R. W. Fenn, “Atmospheric Transmittance/Radiance: Computer Code LOWTRAN6,” AFGL-TR-83–0187, (1983).
  49. E. Palazzi, “Retrieval of trace gases vertical profile in the lower atmosphere combining Differential Optical Absorption Spectroscopy with radiative transfer models,” PhD thesis (Bologna University, Italy, 2008), http://amsdottorato.cib.unibo.it/983/1/Tesi_Palazzi_Elisa.pdf
  50. E. Cupini, PREMAR-2 A Monte Carlo code for radiative transport simulation in atmospheric environments. (RT/INN/98/20. 1998).
  51. A. Sarkissian, H. K. Roscoe, D. J. Fish, “Ozone Measurement by Zenith-Sky Spectrometers: an Evaluation of Errors in Air-Mass Factors calculated by Radiative Transfer Models,” J. Quant. Spectrosc. Radiat. Transf. 54(3), 471–480 (1995). [CrossRef]
  52. J. C. Chai, H. S. Lee, and S. V. Patankar, “Ray Effect and False Scattering in Discrete Ordinates Method,” Numer. Heat Transfer, Part B 24(4), 373- 389 (1993), http://www.informaworld.com/10.1080/10407799308955899
  53. E. Papandrea, E. Arnone, E. Castelli, and M. Premuda, “Sounding the Upper Troposphere-Lower Stratosphere, with Satellite measurements,” Proc. “ESA Living Planet Symposium,” Bergen, Norway, 28 June- 2 July 2010 (ESA-SP-686, December 2010).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited