OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 7 — Mar. 26, 2012
  • pp: 8015–8023

Optically tunable compensation of nonlinear signal distortion in optical fiber by end-span optical phase conjugation

Mark D. Pelusi and Benjamin J. Eggleton  »View Author Affiliations


Optics Express, Vol. 20, Issue 7, pp. 8015-8023 (2012)
http://dx.doi.org/10.1364/OE.20.008015


View Full Text Article

Enhanced HTML    Acrobat PDF (1299 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We demonstrate a nonlinear signal processing approach for compensating nonlinear distortion caused by the Kerr effect in optical fiber transmission. The concept relies on propagating the signal through a separate all-optical module outside the link to apply tunable nonlinear distortion and phase-conjugation in series. We show this uniquely enables tunable regeneration of phase-encoded 40 Gb/s signals of different data-formats and number of WDM channels, to allow significantly higher transmission powers through single and multi-span fiber links. An improvement in the receiver power penalty by 3~4 dB for a bit-error-rate (BER) of ≈10−5 is achieved.

© 2012 OSA

OCIS Codes
(060.2330) Fiber optics and optical communications : Fiber optics communications
(060.4370) Fiber optics and optical communications : Nonlinear optics, fibers
(070.4340) Fourier optics and signal processing : Nonlinear optical signal processing
(190.5040) Nonlinear optics : Phase conjugation
(230.4320) Optical devices : Nonlinear optical devices
(250.4745) Optoelectronics : Optical processing devices

ToC Category:
Fiber Optics and Optical Communications

History
Original Manuscript: December 14, 2011
Revised Manuscript: February 29, 2012
Manuscript Accepted: March 16, 2012
Published: March 22, 2012

Citation
Mark D. Pelusi and Benjamin J. Eggleton, "Optically tunable compensation of nonlinear signal distortion in optical fiber by end-span optical phase conjugation," Opt. Express 20, 8015-8023 (2012)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-7-8015


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. D. J. Richardson, “Applied physics. Filling the light pipe,” Science330(6002), 327–328 (2010). [CrossRef] [PubMed]
  2. K. Roberts, D. Beckett, D. Boertjes, J. Berthold, and C. Laperle, “100G and beyond with digital coherent signal processing,” IEEE Commun. Mag.48(7), 62–69 (2010). [CrossRef]
  3. M.-F. Huang, D. Qian, and E. Ip, “50.53-Gb/s PDM-1024 QAM-OFDM transmission using pilot-based phase noise mitigation,” In Proceedings of the 16th OptoeElectronics and Communications Conference pp. 752–753 (OECC 2011, Taiwan) (2011).
  4. X. Zhou, J. Yu, M.-F. Huang, Y. Shao, T. Wang, L. Nelson, P. Magill, M. Birk, P. I. Borel, D. W. Peckham, R. Lingle, and B. Zhu, “64-Tb/s, 8 b/s/Hz, PDM-36QAM transmission over 320 km using both pre- and post transmission digital signal processing,” J. Lightwave Technol.29(4), 571–577 (2011). [CrossRef]
  5. X. Liu, S. Chandrasekhar, X. Chen, P. J. Winzer, Y. Pan, B. Zhu, T. F. Taunay, M. Fishteyn, M. F. Yan, J. M. Fini, E. M. Monberg, and F. V. Dimarcello, “1.12-Tb/s 32-QAM-OFDM superchannel with 8.6-b/s/Hz intrachannel spectral efficiency and space-division multiplexing with 60-b/s/Hz aggregate spectral efficiency,” In Proceedings of the 37th European Conference on Optical Communication, paper Th.13.B.1 (ECOC 2011, Geneva) (2011).
  6. C. E. Shannon, “A mathematical theory of communication,” Bell Syst. Tech. J.27, 379–423 (1948).
  7. A. D. Ellis, J. Zhao, and D. Cotter, “Approaching the non-linear Shannon limit,” J. Lightwave Technol.28(4), 423–433 (2010). [CrossRef]
  8. G. P. Agrawal, Nonlinear Fiber Optics, 3rd ed. (Academic, 2001).
  9. A. Chowdhury, G. Raybon, R.-J. Essiambre, J. H. Sinsky, A. Adamiecki, J. Leuthold, C. R. Doerr, and S. Chandrasekhar, “Compensation of intrachannel nonlinearities in 40-Gb/s pseudolinear systems using optical-phase conjugation,” J. Lightwave Technol.23(1), 172–177 (2005). [CrossRef]
  10. G. Li, “Recent advances in coherent optical communication,” Adv. Opt. Photon. 1, 279–307 (2009). http://www.opticsinfobase.org/aop/abstract.cfm?URI=aop-1-2-279 .
  11. E. Yamazaki, A. Sano, T. Kobayashi, E. Yoshida, and Y. Miyamoto, “Mitigation of nonlinearities in optical transmission systems,” in Proceedings of the Optical fiber communication conference, paper OThF1 (OFC/NFOEC 2010, San Diego) (Optical Society of America, 2011).
  12. J. C. Geyer, C. R. Fludger, T. Duthel, C. Schulien, and B. Schmauss, “Simple automatic nonlinear compensation with low complexity for implementation in coherent receivers,” in Proceedings of 36th European Conference on Optical Communication, paper P3.02, (ECOC 2010, Torino).
  13. W. Yan, Z. Tao, L. Dou, L. Li, S. Oda, T. Tanimura, T. Hoshida, and J. C. Rasmussen, “Low complexity digital perturbation back-propagation,” in Proceedings of 37th European Conference on Optical Communication, paper Tu.3.A.2, (ECOC 2011, Geneva) (2011).
  14. R. Slavík, F. Parmigiani, J. Kakande, C. Lundstrom, M. Sjödin, P. A. Andrekson, R. Weerasuriya, S. Sygletos, A. D. Ellis, L. Grüner-Nielsen, D. Jakobsen, S. Herstrøm, R. Phelan, J. O’Gorman, A. Bogris, D. Syvridis, S. Dasgupta, P. Petropoulos, and D. J. Richardson, “All-optical phase and amplitude regenerator for next-generation telecommunications systems,” Nat. Photonics4(10), 690–695 (2010). [CrossRef]
  15. S. Watanabe, S. Kaneko, and T. Chikama, “Long-haul fiber transmission using optical phase conjugation,” Opt. Fiber Technol.2(2), 169–178 (1996). [CrossRef]
  16. S. L. Jansen, D. van den Borne, P. M. Krummrich, S. Spälter, G.-D. Khoe, and H. de Waardt, “Long-haul DWDM transmission systems employing optical phase conjugation,” IEEE Sel. Top. Quantum Electron.12(4), 505–520 (2006). [CrossRef]
  17. P. Minzioni, V. Pusino, I. Cristiani, L. Marazzi, M. Martinelli, C. Langrock, M. M. Fejer, and V. Degiorgio, “Optical phase conjugation in phase-modulated transmission systems: experimental comparison of different nonlinearity-compensation methods,” Opt. Express18(17), 18119–18124 (2010). [CrossRef] [PubMed]
  18. M. H. Chou, I. Brener, M. M. Fejer, E. E. Chaban, and S. B. Christman, “1.5-μm-band wavelength conversion based on cascaded second-order nonlinearity in LiNbO3 waveguides,” IEEE Photon. Technol. Lett.11(6), 653–655 (1999). [CrossRef]
  19. J. Yamawaku, H. Takara, T. Ohara, K. Sato, A. Takada, T. Morioka, O. Tadanaga, H. Miyazawa, and M. Asobe, “Simultaneous 25 GHz-spaced DWDM wavelength conversion of 1.03 Tbit/s (103×10 Gbit/s) signals in PPLN waveguide,” Electron. Lett.39(15), 1144–1145 (2003). [CrossRef]
  20. S. Ayotte, H. Rong, S. Xu, O. Cohen, and M. J. Paniccia, “Multichannel dispersion compensation using a silicon waveguide-based optical phase conjugator,” Opt. Lett.32(16), 2393–2395 (2007). [CrossRef] [PubMed]
  21. M. D. Pelusi, F. Luan, D.-Y. Choi, S. J. Madden, D. A. P. Bulla, B. Luther-Davies, and B. J. Eggleton, “Optical phase conjugation by an As2S3 glass planar waveguide for dispersion-free transmission of WDM-DPSK signals over fiber,” Opt. Express18(25), 26686–26694 (2010). [CrossRef] [PubMed]
  22. X. Li, F. Zhang, Z. Chen, and A. Xu, “Suppression of XPM and XPM-induced nonlinear phase noise for RZ-DPSK signals in 40 Gbit/s WDM transmission systems with optimum dispersion mapping,” Opt. Express15(26), 18247–18252 (2007). [CrossRef] [PubMed]
  23. F. Zhang, C. A. Bunge, K. Petermann, and A. Richter, “Optimum dispersion mapping of single-channel 40 Gbit/s return-to-zero differential phase-shift keying transmission systems,” Opt. Express14(15), 6613–6618 (2006). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited