OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 7 — Mar. 26, 2012
  • pp: 8055–8070

Nano-lens diffraction around a single heated nano particle

Markus Selmke, Marco Braun, and Frank Cichos  »View Author Affiliations

Optics Express, Vol. 20, Issue 7, pp. 8055-8070 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (2179 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The action of a nanoscopic spherically symmetric refractive index profile on a focused Gaussian beam may easily be envisaged as the action of a phase-modifying element, i.e. a lens: Rays traversing the inhomogeneous refractive index field n(r) collect an additional phase along their trajectory which advances or retards their phase with respect to the unperturbed ray. This lens-like action has long been understood as being the mechanism behind the signal of thin sample photothermal absorption measurements [Appl. Opt. 34, 41–50 (1995)], [Jpn. J. Appl. Phys. 45, 7141–7151 (2006)], where a cylindrical symmetry and a different lengthscale is present. In photothermal single (nano-)particle microscopy, however, a complicated, though prediction-wise limited, electrodynamic scattering treatment was established [Phys. Rev. B 73, 045424 (2006)] during the emergence of this new technique. Our recent study [ACS Nano, DOI: 10.1021/nn300181h] extended this approach into a full ab-initio model and showed for the first time that the mechanism behind the signal, despite its nanoscopic origin, is also the lens-like action of the induced refractive index profile only hidden in the complicated guise of the theoretical generalized Mie-like framework. The diffraction model proposed here yields succinct analytical expressions for the axial photothermal signal shape and magnitude and its angular distribution, all showing the clear lens-signature. It is further demonstrated, that the Gouy-phase of a Gaussian beam does not contribute to the relative photothermal signal in forward direction, a fact which is not easily evident from the more rigorous EM treatment. The presented model may thus be used to estimate the signal shape and magnitude in photothermal single particle microscopy.

© 2012 OSA

OCIS Codes
(050.5080) Diffraction and gratings : Phase shift
(110.6820) Imaging systems : Thermal imaging
(180.5810) Microscopy : Scanning microscopy
(190.4870) Nonlinear optics : Photothermal effects
(260.1960) Physical optics : Diffraction theory
(350.4990) Other areas of optics : Particles
(050.1965) Diffraction and gratings : Diffractive lenses
(350.4238) Other areas of optics : Nanophotonics and photonic crystals

ToC Category:
Physical Optics

Original Manuscript: January 18, 2012
Revised Manuscript: February 29, 2012
Manuscript Accepted: February 29, 2012
Published: March 22, 2012

Virtual Issues
Vol. 7, Iss. 5 Virtual Journal for Biomedical Optics

Markus Selmke, Marco Braun, and Frank Cichos, "Nano-lens diffraction around a single heated nano particle," Opt. Express 20, 8055-8070 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. X. S. Xie, S. J. Lu, W. Min, S. S. Chong, G. R. Holtom, “Label-free imaging of heme proteins with two-photon excited photothermal lens microscopy,” Appl. Phys. Lett. 96, 113701 (2010). [CrossRef]
  2. S. Sinha, A. Ray, K. Dasgupta, “Solvent dependent nonlinear refraction in organic dye solution,” J. Appl. Phys. 87, 3222–3226 (2000). [CrossRef]
  3. A. V. Brusnichkin, D. A. Nedosekin, M. A. Proskurnin, V. P. Zharov, “Photothermal lens detection of gold nanoparticles: Theory and experiments,” Appl. Spectrosc. 61, 1191–1201 (2007). [CrossRef] [PubMed]
  4. G. Battaglin, P. Calvelli, E. Cattaruzza, F. Gonella, R. Polloni, G. Mattei, P. Mazzoldi, “Z-scan study on the nonlinear refractive index of copper nanocluster composite silica glass,” Appl. Phys. Lett. 78, 3953–3955 (2001). [CrossRef]
  5. D. Rings, R. Schachoff, M. Selmke, F. Cichos, K. Kroy, “Hot Brownian Motion,” Phys. Rev. Lett. 105, 090604 (2010). [CrossRef] [PubMed]
  6. F. Jurgensen, W. Schroer, “Studies on the diffraction image of a thermal lens,” Appl. Opt. 34, 41–50 (1995). [CrossRef] [PubMed]
  7. J. Moreau, V. Loriette, “Confocal dual-beam thermal-lens microscope: Model and experimental results,” Jpn. J. Appl. Phys. 45, 7141–7151 (2006). [CrossRef]
  8. J. Moreau, V. Loriette, “Confocal thermal-lens microscope,” Opt. Lett. 29, 1488–1490 (2004). [CrossRef] [PubMed]
  9. M. Harada, T. Kitamori, T. Sawada, “Phase signal of optical beam deflection from single microparticles -theory and experiment,” J. Appl. Phys. 73, 2264–2271 (1993). [CrossRef]
  10. J. Q. Wu, T. Kitamori, T. Sawada, “Theory of optical beam deflection for single microparticles,” J. of Appl. Phys. 69, 7015–7020 (1991). [CrossRef]
  11. W. B. Jackson, N. M. Amer, A. C. Boccara, D. Fournier, “Photothermal deflection spectroscopy and detection,” Appl. Opt. 20, 1333–1344 (1981). [CrossRef] [PubMed]
  12. M. Harada, K. Iwamotok, T. Kitamori, T. Sawada, “Photothermal microscopy with excitation and probe beams coaxial under the microscope and its application to microparticle ananlysis,” Anal. Chem. 65, 2938–2940 (1993). [CrossRef]
  13. K. Uchiyama, A. Hibara, H. Kimura, T. Sawada, T. Kitamori, “Thermal lens microscope,” Jpn. J. Appl. Phys. 39, 5316–5322 (2000). [CrossRef]
  14. A. Gaiduk, M. Yorulmaz, P. V. Ruijgrok, M. Orrit, “Room-temperature detection of a single molecule’s absorption by photothermal contrast,” Science 330, 353–356 (2010). [CrossRef] [PubMed]
  15. S. Berciaud, L. Cognet, G. Blab, B. Lounis, “Photothermal heterodyne imaging of individual nonfluorescent nanoclusters and nanocrystals,” Phys. Rev. Lett. 93, 257402 (2004). [CrossRef]
  16. D. Boyer, P. Tamarat, A. Maali, B. Lounis, M. Orrit, “Photothermal imaging of nanometer-sized metal particles among scatterers,” Science 297, 1160–1163 (2002). [CrossRef] [PubMed]
  17. M. Selmke, M. Braun, F. Cichos, “Photothermal Single Particle Microscopy: Detection of a Nano-Lens,” ACS Nano, DOI: [CrossRef] [PubMed]
  18. J. Hwang, W. E. Moerner, “Interferometry of a single nanoparticle using the gouy phase of a focused laser beam,” Opt. Commun. 280, 487–491 (2007). [CrossRef]
  19. G. C. K. Chen, M. Andika, S. Vasudevan, “Excitation temporal pulse shape and probe beam size effect on pulsed photothermal lens of single particle,” J. Opt. Soc. Am. B 27, 796–805 (2010). [CrossRef]
  20. M. Harada, M. Shibata, T. Kitamori, T. Sawada, “Application of coaxial beam photothermal microscopy to the analysis of a single biological cell in water,” Anal. Chim. Acta. 299, 343–347 (1995). [CrossRef]
  21. S. Berciaud, D. Lasne, G. Blab, L. Cognet, B. Lounis, “Photothermal heterodyne imaging of individual metallic nanoparticles: Theory versus experiment,” Phys. Rev. B 73, 045424 (2006). [CrossRef]
  22. Z. L. Horvath, Z. Bor, “Focusing of truncated gaussian beams,” Opt. Commun. 222, 51–68 (2003). [CrossRef]
  23. S. Teng, T. Zhou, C. Cheng, “Fresnel diffraction of truncated gaussian beam,” Optik 118, 435–439 (2007). [CrossRef]
  24. A. A. Vigasin, “Diffraction of light by absorbing inclusions in solids,” Kvant. Elektron. (Moscow) [Sov. J. Quantum Electron.] 4, 662–666 (1977).
  25. G. Baffou, P. Bon, J. Savatier, J. Polleux, M. Zhu, M. Merlin, H. Rigneault, S. Monneret, “Thermal Imaging of Nanostructures by Quantitative Optical Phase Analysis,” ACS Nano, DOI: [CrossRef] [PubMed]
  26. B. E. A. Saleh, M. C. Teich, Fundamentals of Photonics (John Wiley and Sons, Inc., 1991). [CrossRef]
  27. C. Hu, J. R. Whinnery, “New thermooptical measurement method and a comparison with other methods,” Appl. Opt. 12, 72–79 (1973). [CrossRef] [PubMed]
  28. M. Selmke, M. Braun, F. Cichos, “Photonic Rutherford Scattering,” in preparation (2012).
  29. R. Escalona, “Comparative study between interferometric and z-scan techniques for thermal lensing characterization,” Opt. Commun. 281, 1323–1330 (2008). [CrossRef]
  30. S. M. Mian, S. B. McGee, N. Melikechi, “Experimental and theoretical investigation of thermal lensing effects in mode-locked femtosecond z-scan experiments,” Opt. Commun. 207, 339–345 (2002). [CrossRef]
  31. A. Gnoli, L. Razzari, M. Righini, “Z-scan measurements using high repetition rate lasers: how to manage thermal effects,” Opt. Express 13, 7976–7981 (2005). [CrossRef] [PubMed]
  32. A. Gnoli, A. M. Paoletti, G. Pennesi, G. Rossi, M. Righini, “High-accuracy z-scan measurements of the optical nonlinearity of bis-phthalocyanines,” J. Porphyrins Phthalocyanines 11, 481–486 (2007). [CrossRef]
  33. R. Polloni, B. F. Scremin, P. Calvelli, E. Cattaruzza, G. Battaglin, G. Mattei, “Metal nanoparticles-silica composites: Z-scan determination of non-linear refractive index,” J. Non-Cryst. Solids 322, 300–305 (2003). [CrossRef]
  34. O. Pena, U. Pal, “Scattering of electromagnetic radiation by a multilayered sphere,” Comput. Phys. Commun. 180, 2348–2354 (2009). [CrossRef]
  35. F. Onofri, G. Grehan, G. Gouesbet, “Electromagnetic scattering from a multilayered sphere located in an arbitrary beam,” Appl. Opt. 34, 7113–7124 (1995). [CrossRef] [PubMed]
  36. G. Gouesbet, G. Grehan, B. Maheu, “Scattering of a gaussian-beam by a mie scatter center using a bromwich formalism,” J. Optics-Nouvelle Revue D Optique 16, 83–93 (1985).
  37. G. Gouesbet, B. Maheu, G. Grehan, “Light-scattering from a sphere arbitrarily located in a gaussian-beam, using a bromwich formulation,” J. Opt. Soc. Am. A 5, 1427–1443 (1988). [CrossRef]
  38. G. Gouesbet, J. Lock, G. Grehan, “Generalized lorenz-mie theories and description of electromagnetic arbitrary shaped beams: Localized approximations and localized beam models, a review,” J. Quant. Spectrosc. Radiat. Transfer 112, 1–27 (2011). [CrossRef]
  39. G. Gouesbet, J. A. Lock, G. Grehan, “Partial-wave representations of laser-beams for use in light-scattering calculations,” Appl. Opt. 34, 2133–2143 (1995). [CrossRef] [PubMed]
  40. G. H. Meeten, “Computation of s1–s2 in mie scattering-theory,” J. Phys. D: Appl. Phys. 17, L89–L91 (1984). [CrossRef]
  41. J. A. Lock, E. A. Hovenac, “Diffraction of a gaussian-beam by a spherical obstacle,” Am. J. Phys. 61, 698–707 (1993). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited