OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 7 — Mar. 26, 2012
  • pp: 8100–8116

Improving the radiative decay rate for dye molecules with hyperbolic metamaterials

J. Kim, V. P. Drachev, Z. Jacob, G. V. Naik, A. Boltasseva, E. E. Narimanov, and V. M. Shalaev  »View Author Affiliations

Optics Express, Vol. 20, Issue 7, pp. 8100-8116 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (2140 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We directly demonstrate an improvement in the radiative decay rate of dye molecules near multilayer hyperbolic metamaterials (HMMs). Our comprehensive study shows a radiative decay rate for rhodamine 800 (Rh800) that is several times higher due to the use of HMM samples as compared to dielectric substrates. This is also the first experimental demonstration that multilayer hyperbolic metamaterials provide an increase in the radiative decay rate relative to those from either thin or thick gold films.

© 2012 OSA

OCIS Codes
(250.5230) Optoelectronics : Photoluminescence
(160.3918) Materials : Metamaterials
(250.5403) Optoelectronics : Plasmonics

ToC Category:

Original Manuscript: January 23, 2012
Revised Manuscript: March 2, 2012
Manuscript Accepted: March 2, 2012
Published: March 22, 2012

J. Kim, V. P. Drachev, Z. Jacob, G. V. Naik, A. Boltasseva, E. E. Narimanov, and V. M. Shalaev, "Improving the radiative decay rate for dye molecules with hyperbolic metamaterials," Opt. Express 20, 8100-8116 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. K. Drexhage, “Influence of a dielectric interface on fluorescence decay time,” J. Lumin. 1, 693–701 (1970). [CrossRef]
  2. W. Barnes, “Fluorescence near interfaces: the role of photonic mode density,” J. Mod. Opt. 45(4), 661–699 (1998). [CrossRef]
  3. G. Pake, E. Purcell, “Line shapes in nuclear paramagnetism,” Phys. Rev. 74(9), 1184–1188 (1948). [CrossRef]
  4. J. B. Khurgin, G. Sun, R. A. Soref, “Enhancement of luminescence efficiency using surface plasmon polaritons: figures of merit,” J. Opt. Soc. Am. B 24(8), 1968–1980 (2007). [CrossRef]
  5. J. J. Burke, G. I. Stegeman, T. Tamir, “Surface-polariton-like waves guided by thin, lossy metal films,” Phys. Rev. B Condens. Matter 33(8), 5186–5201 (1986). [CrossRef] [PubMed]
  6. E. H. Hellen, D. Axelrod, “Fluorescence emission at dielectric and metal-film interfaces,” J. Opt. Soc. Am. B 4(3), 337–350 (1987). [CrossRef]
  7. L. Luan, P. Sievert, W. Mu, Z. Hong, J. Ketterson, “Highly directional fluorescence emission from dye molecules embedded in a dielectric layer adjacent to a silver film,” New J. Phys. 10(7), 073012 (2008). [CrossRef]
  8. G. Winter, W. L. Barnes, “Emission of light through thin silver films via near-field coupling to surface plasmon polaritons,” Appl. Phys. Lett. 88(5), 051109 (2006). [CrossRef]
  9. S. Hayashi, Y. Yamada, A. Maekawa, M. Fujii, “Surface plasmon-mediated light emission from dye layer in reverse attenuated total reflection geometry,” Jpn. J. Appl. Phys. 47(2), 1152–1157 (2008). [CrossRef]
  10. H. Yoon, S. A. Maier, D. D. C. Bradley, P. N. Stavrinou, “Surface plasmon coupled emission using conjugated light-emitting polymer films,” Opt. Mater. Express 1(6), 1127–1138 (2011). [CrossRef]
  11. R. M. Bakker, V. P. Drachev, Z. Liu, H. K. Yuan, R. H. Pedersen, A. Boltasseva, J. Chen, J. Irudayaraj, A. V. Kildishev, V. M. Shalaev, “Nanoantenna array-induced fluorescence enhancement and reduced lifetimes,” New J. Phys. 10(12), 125022 (2008). [CrossRef]
  12. J. Khurgin, G. Sun, R. Soref, “Electroluminescence efficiency enhancement using metal nanoparticles,” Appl. Phys. Lett. 93(2), 021120 (2008). [CrossRef]
  13. L. Novotny and B. Hecht, Principles of nano-optics (Cambridge University Press, 2006).
  14. J. R. Lakowicz, “Radiative decay engineering 3. Surface plasmon-coupled directional emission,” Anal. Biochem. 324(2), 153–169 (2004). [CrossRef] [PubMed]
  15. K. Aslan, I. Gryczynski, J. Malicka, E. Matveeva, J. R. Lakowicz, C. D. Geddes, “Metal-enhanced fluorescence: an emerging tool in biotechnology,” Curr. Opin. Biotechnol. 16(1), 55–62 (2005). [CrossRef] [PubMed]
  16. Z. Jacob, I. Smolyaninov, and E. Narimanov, “Broadband Purcell effect: Radiative decay engineering with metamaterials,” Arxiv preprint arXiv:0910.3981 (2009).
  17. Z. Jacob, “Classical and quantum optics of hyperbolic metamaterials,” in Dissertation Purdue University, West Lafayette (2010).
  18. Z. Jacob, E. E. Narimanov, “Optical hyperspace for plasmons: Dyakonov states in metamaterials,” Appl. Phys. Lett. 93(22), 221109 (2008). [CrossRef]
  19. S. M. Vukovic, I. V. Shadrivov, Y. S. Kivshar, “Surface Bloch waves in metamaterial and metal-dielectric superlattices,” Appl. Phys. Lett. 95, 041902 (2009).
  20. X. Ni, G. Naik, A. Kildishev, Y. Barnakov, A. Boltasseva, V. Shalaev, “Effect of metallic and hyperbolic metamaterial surfaces on electric and magnetic dipole emission transitions,” Appl. Phys. B 103(3), 553–558 (2011). [CrossRef]
  21. Z. Jacob, J. Kim, G. Naik, A. Boltasseva, E. Narimanov, V. Shalaev, “Engineering photonic density of states using metamaterials,” Appl. Phys. B 100(1), 215–218 (2010). [CrossRef]
  22. M. A. Noginov, H. Li, Y. A. Barnakov, D. Dryden, G. Nataraj, G. Zhu, C. E. Bonner, M. Mayy, Z. Jacob, E. E. Narimanov, “Controlling spontaneous emission with metamaterials,” Opt. Lett. 35(11), 1863–1865 (2010). [CrossRef] [PubMed]
  23. M. D. Escarra, S. Thongrattanasiri, A. J. Hoffman, J. Chen, W. O. Charles, K. Conover, V. A. Podolskiy, and C. F. Gmachl, “Broadband, Low-Dispersion, Mid-Infrared Metamaterials,” in Quantum Electronics and Laser Science Conference, OSA Technical Digest (CD) (Optical Society of America, 2010), paper QWB4.
  24. K. Selanger, J. Falnes, T. Sikkeland, “Fluorescence lifetime studies of Rhodamine 6G in methanol,” J. Phys. Chem. 81(20), 1960–1963 (1977). [CrossRef]
  25. A. Penzkofer, Y. Lu, “Fluorescence quenching of Rhodamine 6G in methanol at high concentration,” Chem. Phys. 103(2-3), 399–405 (1986). [CrossRef]
  26. F. Ammer, A. Penzkofer, P. Weidner, “Concentration-dependent fluorescence behaviour of oxazine 750 and rhodamine 6G in porous silicate xerogel monoliths,” Chem. Phys. 192(3), 325–331 (1995). [CrossRef]
  27. R. M. A. Azzam and N. M. Bashara, Ellipsometry and polarized light (North Holland, 1987).
  28. S. M. Rytov, “Electromagnetic properties of a finely stratified medium,” Sov. Phys. JETP 2, 466–475 (1956).
  29. B. Wood, J. Pendry, D. Tsai, “Directed subwavelength imaging using a layered metal-dielectric system,” Phys. Rev. B 74(11), 115116 (2006). [CrossRef]
  30. O. Kidwai, S. V. Zhukovsky, J. E. Sipe, “Dipole radiation near hyperbolic metamaterials: applicability of effective-medium approximation,” Opt. Lett. 36(13), 2530–2532 (2011). [CrossRef] [PubMed]
  31. A. P. Vinogradov, A. I. Ignatov, A. M. Merzlikin, S. A. Tretyakov, C. R. Simovski, “Additional effective medium parameters for composite materials (excess surface currents),” Opt. Express 19(7), 6699–6704 (2011). [CrossRef] [PubMed]
  32. K. Aslan, Z. Leonenko, J. R. Lakowicz, C. D. Geddes, “Annealed silver-island films for applications in metal-enhanced fluorescence: interpretation in terms of radiating plasmons,” J. Fluoresc. 15(5), 643–654 (2005). [CrossRef] [PubMed]
  33. M. Noginov, G. Zhu, M. Bahoura, C. Small, C. Davison, J. Adegoke, V. P. Drachev, P. Nyga, V. Shalaev, “Enhancement of spontaneous and stimulated emission of a rhodamine 6G dye by an Ag aggregate,” Phys. Rev. B 74(18), 184203 (2006). [CrossRef]
  34. Y. Zhang, K. Aslan, S. N. Malyn, C. D. Geddes, “Metal-enhanced phosphorescence (MEP),” Chem. Phys. Lett. 427(4-6), 432–437 (2006). [CrossRef]
  35. A. T. R. Williams, S. A. Winfield, J. N. Miller, “Relative fluorescence quantum yields using a computer-controlled luminescence spectrometer,” Analyst (Lond.) 108(1290), 1067–1071 (1983). [CrossRef]
  36. D. P. Benfey, D. C. Brown, S. J. Davis, L. G. Piper, R. F. Foutter, “Diode-pumped dye laser analysis and design,” Appl. Opt. 31(33), 7034–7041 (1992). [CrossRef] [PubMed]
  37. H. N. S. Krishnamoorthy, Z. Jacob, E. Narimanov, I. Kretzschmar, and V. M. Menon, “Metamaterial based broadband engineering of quantum dot spontaneous emission,” arXiv:0912.2454v1 [physics.optics] (2009).
  38. G. Ford, W. Weber, “Electromagnetic interactions of molecules with metal surfaces,” Phys. Rep. 113(4), 195–287 (1984). [CrossRef]
  39. A. N. Poddubny, P. A. Belov, Y. S. Kivshar, “Spontaneous radiation of a finite-size dipole emitter in hyperbolic media,” Phys. Rev. A 84(2), 023807 (2011). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited