OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 7 — Mar. 26, 2012
  • pp: 8117–8135

Dual-wavelength passive and hybrid mode-locking of 3, 4.5 and 10 GHz InAs/InP(100) quantum dot lasers

M.S. Tahvili, L. Du, M.J.R. Heck, R. Nötzel, M.K. Smit, and E.A.J.M. Bente  »View Author Affiliations

Optics Express, Vol. 20, Issue 7, pp. 8117-8135 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (2077 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We present an investigation of passive and hybrid mode-locking in Fabry-Pérot type two-section InAs/InP(100) quantum dot lasers that show dual wavelength operation. Over the whole current and voltage range for mode-locking of these lasers, the optical output spectra show two distinct lobes. The two lobes provide a coherent bandwidth and are verified to lead to two synchronized optical pulses. The generated optical pulses are elongated in time due to a chirp which shows opposite signs over the two spectral lobes. Self-induced mode-locking in the single-section laser shows that the dual-wavelength spectra correspond to emission from ground state. In the hybrid mode-locking regime, a map of locking range is presented by measuring the values of timing jitter for several values of power and frequency of the external electrical modulating signal. An overview of the systematic behavior of InAs/InP(100) quantum dot mode-locked lasers is presented as conclusion.

© 2012 OSA

OCIS Codes
(130.0250) Integrated optics : Optoelectronics
(140.4050) Lasers and laser optics : Mode-locked lasers
(140.5960) Lasers and laser optics : Semiconductor lasers
(250.5590) Optoelectronics : Quantum-well, -wire and -dot devices

ToC Category:
Lasers and Laser Optics

Original Manuscript: January 26, 2012
Revised Manuscript: March 8, 2012
Manuscript Accepted: March 12, 2012
Published: March 22, 2012

M.S. Tahvili, L. Du, M.J.R. Heck, R. Nötzel, M.K. Smit, and E.A.J.M. Bente, "Dual-wavelength passive and hybrid mode-locking of 3, 4.5 and 10 GHz InAs/InP(100) quantum dot lasers," Opt. Express 20, 8117-8135 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. R. Nötzel, S. Anantathanasarn, R. P. J. van Veldhoven, F. W. M. van Otten, T. J. Eijkemans, A. Trampert, B. Satpati, Y. Barbarin, E. A. J. M. Bente, Y.-S. Oei, T. de Vries, E. Geluk, B. Smalbrugge, M. K. Smit, J. H. Wolter, “Self assembled InAs/InP quantum dots for telecom applications in the 1.55 µm wavelength range: wavelength tuning, stacking, polarization control, and lasing,” Jpn. J. Appl. Phys. 45(8B), 6544–6549 (2006). [CrossRef]
  2. F. Lelarge, B. Dagens, J. Renaudier, R. Brenot, A. Accard, F. Dijk, D. Make, O. L. Gouezigou, J.-G. Provost, F. Poingt, J. Landreau, O. Drisse, E. Derouin, B. Rousseau, F. Pommereau, G.-H. Duan, “Recent advances on InAs/InP quantum dash based semiconductor lasers and optical amplifiers operating at 1.55µm,” IEEE J. Sel. Top. Quantum Electron. 13(1), 111–124 (2007). [CrossRef]
  3. B. W. Tilma, M. S. Tahvili, J. Kotani, R. Nötzel, M. K. Smit, E. A. J. M. Bente, “Measurement and analysis of optical gain spectra in 1.6 to 1.8 μm InAs/InP (100) quantum-dot amplifiers,” Opt. Quantum Electron. 41(10), 735–749 (2009). [CrossRef]
  4. B. W. Tilma, Y. Jiao, J. Kotani, B. Smalbrugge, H. P. M. M. Ambrosius, P. J. Thijs, X. J. M. Leijtens, R. Ntzel, M. K. Smit, E. A. J. M. Bente, “Integrated tunable quantum-dot laser for optical coherence tomography in the 1.7µm wavelength region,” IEEE J. Quantum Electron. 48(2), 87–98 (2012). [CrossRef]
  5. X. Huang, A. Stintz, H. Li, L. F. Lester, J. Cheng, K. J. Malloy, “Passive mode-locking in 1.3 μm two-section InAs quantum dot lasers,” Appl. Phys. Lett. 78(19), 2825–2827 (2001). [CrossRef]
  6. E. U. Rafailov, M. A. Cataluna, W. Sibbett, N. D. Il’inskaya, Y. M. Zadiranov, A. E. Zhukov, V. M. Ustinov, D. A. Livshits, A. R. Kovsh, N. N. Ledentsov, “High-power picosecond and femtosecond pulse generation from a two-section mode-locked quantum-dot laser,” Appl. Phys. Lett. 87(8), 081107 (2005). [CrossRef]
  7. M. G. Thompson, A. R. Rae, M. Xia, R. V. Penty, I. H. White, “InGaAs quantum-dot mode-locked laser diodes,” IEEE J. Sel. Top. Quantum Electron. 15(3), 661–672 (2009). [CrossRef]
  8. M. J. R. Heck, E. A. J. M. Bente, B. Smalbrugge, Y. S. Oei, M. K. Smit, S. Anantathanasarn, R. Nötzel, “Observation of Q-switching and mode-locking in two-section InAs/InP (100) quantum dot lasers around 1.55 mum,” Opt. Express 15(25), 16292–16301 (2007). [CrossRef] [PubMed]
  9. M. J. R. Heck, A. Renault, E. A. J. M. Bente, Y.-S. Oei, M. K. Smit, K. S. E. Eikema, W. Ubachs, S. Anantathanasarn, R. Nötzel, “Passively mode-locked 4.6 and 10.5 GHz quantum dot laser diodes around 1.55 μm with large operating regime,” IEEE J. Sel. Top. Quantum Electron. 15(3), 634–643 (2009). [CrossRef]
  10. W. M. Yee, K. A. Shore, “Multimode analysis of self locked FM operation in laser diodes,” IEE Proc.-J: Optoelectron. 140, 21 (1993).
  11. J. P. Tourrenc, A. Akrout, K. Merghem, A. Martinez, F. Lelarge, A. Shen, G. H. Duan, A. Ramdane, “Experimental investigation of the timing jitter in self-pulsating quantum-dash lasers operating at 155 µm,” Opt. Express 16(22), 17706–17713 (2008). [CrossRef] [PubMed]
  12. S. Anantathanasarn, R. Nötzel, P. J. van Veldhoven, F. W. M. van Otten, Y. Barbarin, G. Servanton, T. de Vries, E. Smalbrugge, E. J. Geluk, T. J. Eijkemans, E. A. J. M. Bente, Y. S. Oei, M. K. Smit, J. H. Wolter, “Lasing of wavelength-tunable (1.55 μm region) InAs/InGaAsP/InP (100) quantum dots grown by metal organic vapor-phase epitaxy,” Appl. Phys. Lett. 89(7), 073115 (2006). [CrossRef]
  13. S. Arahira, Y. Ogawa, “Repetition – frequency tuning of monolithic passively mode-locked semiconductor lasers with integrated extended cavities,” IEEE J. Quantum Electron. 33(2), 255–264 (1997). [CrossRef]
  14. Z. Zhang, T. Yagi, “Dual-wavelength synchronous operation of a mode-locked Ti:Sapphire laser based on self-spectrum splitting,” Opt. Lett. 18(24), 2126 (1993). [CrossRef] [PubMed]
  15. Z. Cong, D. Tang, W. De Tan, J. Zhang, C. Xu, D. Luo, X. Xu, D. Li, J. Xu, X. Zhang, Q. Wang, “Dual-wavelength passively mode-locked Nd:LuYSiO5 laser with SESAM,” Opt. Express 19(5), 3984–3989 (2011). [CrossRef] [PubMed]
  16. K. Veselinov, F. Grillot, C. Cornet, J. Even, A. Bekiarski, M. Gioannini, S. Loualiche, “Analysis of the double laser emission occurring in 1.55-µm InAs–InP (113)B quantum-dot lasers,” IEEE J. Sel. Top. Quantum Electron. 43(9), 810–816 (2007). [CrossRef]
  17. N. A. Naderi, F. Grillot, K. Yang, J. B. Wright, A. Gin, L. F. Lester, “Two-color multi-section quantum dot distributed feedback laser,” Opt. Express 18(26), 27028–27035 (2010). [CrossRef] [PubMed]
  18. F. Grillot, N. A. Naderi, J. B. Wright, R. Raghunathan, M. T. Crowley, L. F. Lester, “A dual-mode quantum dot laser operating in the excited state,” Appl. Phys. Lett. 99(23), 231110 (2011). [CrossRef]
  19. S. Breuer, M. Rossetti, W. Elsasser, L. Drzewietzki, P. Bardella, I. Montrosset, M. Krakowski, M. Hopkinson, “Reverse ground-state excited-state transition dynamics in two-section quantum dot semiconductor lasers: mode-locking and state-switching,” Proc. SPIE 7720, 772011, 772011-10 (2010). [CrossRef]
  20. M. A. Cataluna, W. Sibbett, D. A. Livshits, J. Weimert, A. R. Kovsh, E. U. Rafailov, “Stable mode locking via ground- or excited-state transitions in a two-section quantum-dot laser,” Appl. Phys. Lett. 89(8), 081124 (2006). [CrossRef]
  21. J. Liu, Z. Lu, S. Raymond, P. J. Poole, P. J. Barrios, D. Poitras, “Dual-wavelength 92.5 GHz self-mode-locked InP-based quantum dot laser,” Opt. Lett. 33(15), 1702–1704 (2008). [CrossRef] [PubMed]
  22. C. Mesaritakis, C. Simos, H. Simos, I. Krestnikov, D. Syvridis, “Dual ground-state pulse generation from a passively mode-locked InAs/InGaAs quantum dot laser,” Appl. Phys. Lett. 99(14), 141109 (2011). [CrossRef]
  23. M. J. R. Heck, E. J. Salumbides, A. Renault, E. A. J. M. Bente, Y. S. Oei, M. K. Smit, R. van Veldhoven, R. Nötzel, K. S. E. Eikema, W. Ubachs, “Analysis of hybrid mode-locking of two-section quantum dot lasers operating at 1.5 microm,” Opt. Express 17(20), 18063–18075 (2009). [CrossRef] [PubMed]
  24. G. Fiol, D. Arsenijević, D. Bimberg, A. G. Vladimirov, M. Wolfrum, E. A. Viktorov, P. Mandel, “Hybrid mode-locking in a 40 GHz monolithic quantum dot laser,” Appl. Phys. Lett. 96(1), 011104 (2010). [CrossRef]
  25. K. Sato, “Optical pulse generation using Fabry–Pérot lasers under continuous-wave operation,” IEEE J. Sel. Top. Quantum Electron. 9(5), 1288–1293 (2003). [CrossRef]
  26. W. Yang, N. J. Sauer, P. G. Bernasconi, L. Zhang, “Self-mode-locked single-section Fabry-Perot semiconductor lasers at 1.56 microm,” Appl. Opt. 46(1), 113–116 (2007). [CrossRef] [PubMed]
  27. Z. G. Lu, J. R. Liu, P. J. Poole, S. Raymond, P. J. Barrios, D. Poitras, G. Pakulski, P. Grant, D. Roy-Guay, “An L-band monolithic InAs/InP quantum dot mode-locked laser with femtosecond pulses,” Opt. Express 17(16), 13609–13614 (2009). [CrossRef] [PubMed]
  28. L. F. Tiemeijer, P. I. Kuindersma, P. J. A. Thijs, G. L. J. Rikken, “Passive FM locking in InGaAsP semiconductor lasers,” IEEE J. Quantum Electron. 25(6), 1385–1392 (1989). [CrossRef]
  29. Y. Barbarin, E. A. J. M. Bente, M. J. R. Heck, Y. S. Oei, R. Nötzel, M. K. Smit, “Characterization of a 15 GHz integrated bulk InGaAsP passively modelocked ring laser at 1.53microm,” Opt. Express 14(21), 9716–9727 (2006). [CrossRef] [PubMed]
  30. M. S. Tahvili, Y. Barbarin, X. J. M. Leijtens, T. de Vries, E. Smalbrugge, J. Bolk, H. P. M. M. Ambrosius, M. K. Smit, E. A. J. M. Bente, “Directional control of optical power in integrated InP/InGaAsP extended cavity mode-locked ring lasers,” Opt. Lett. 36(13), 2462–2464 (2011). [CrossRef] [PubMed]
  31. C. Y. Wang, L. Diehl, A. Gordon, C. Jirauschek, F. X. Kärtner, A. Belyanin, D. Bour, S. Corzine, G. Höfler, M. Troccoli, J. Faist, F. Capasso, “Coherent instabilities in a semiconductor laser with fast gain recovery,” Phys. Rev. A 75(3), 031802 (2007). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited