OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 7 — Mar. 26, 2012
  • pp: 8136–8147

Antireflective coatings for multijunction solar cells under wide-angle ray bundles

Marta Victoria, César Domínguez, Ignacio Antón, and Gabriel Sala  »View Author Affiliations

Optics Express, Vol. 20, Issue 7, pp. 8136-8147 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (939 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Two important aspects must be considered when optimizing antireflection coatings (ARCs) for multijunction solar cells to be used in concentrators: the angular light distribution over the cell created by the particular concentration system and the wide spectral bandwidth the solar cell is sensitive to. In this article, a numerical optimization procedure and its results are presented. The potential efficiency enhancement by means of ARC optimization is calculated for several concentrating PV systems. In addition, two methods for ARCs direct characterization are presented. The results of these show that real ARCs slightly underperform theoretical predictions.

© 2012 OSA

OCIS Codes
(220.1770) Optical design and fabrication : Concentrators
(310.1210) Thin films : Antireflection coatings
(350.6050) Other areas of optics : Solar energy

ToC Category:
Thin Films

Original Manuscript: February 15, 2012
Revised Manuscript: March 17, 2012
Manuscript Accepted: March 19, 2012
Published: March 22, 2012

Marta Victoria, César Domínguez, Ignacio Antón, and Gabriel Sala, "Antireflective coatings for multijunction solar cells under wide-angle ray bundles," Opt. Express 20, 8136-8147 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. Luque, Solar cells and optics for photovoltaic concentration (Adam Hilger, 1989).
  2. M. A. Green, K. Emery, Y. Hishikawa, W. Warta, E. D. Dunlop, “Solar cell efficiency tables (Version 38),” Prog. Photovolt. Res. Appl. 19(5), 565–572 (2011). [CrossRef]
  3. R. Winston, J. C. Miñano, and P. Benítez, Nonimaging Optics (Elsevier, 2005).
  4. D. J. Aiken, “Antireflection coating design for series interconnected multi-junction solar cells,” Prog. Photovolt. Res. Appl. 8(6), 563–570 (2000). [CrossRef]
  5. C. Algora, V. Díaz, “Modelling of GaAs solar cells under wide angle cones of homogeneus light,” Prog. Photovolt. Res. Appl. 7(5), 379–386 (1999). [CrossRef]
  6. V. Dı́az Luque, C. Algora del Valle, “On the effects of tilted light in a global prediction of AlGaAs/GaAs solar cell performance,” Solar Energy & Solar Cells 57(4), 313–322 (1999). [CrossRef]
  7. C. E. Valdivia, E. Desfonds, D. Masson, S. Fafard, A. Carlson, J. Cook, T. J. Hall, K. Hinzer, “Optimization of antireflection coating design for multijunction solar cells and concentrator systems,” Proc. SPIE 7099, 709915, 709915-10 (2008). [CrossRef]
  8. S. Wojtczuk, P. Chiu, X. Zhang, D. Derkacs, C. Harris, D. Pulver, and M. Timmons, “InGaP/GaAs/InGaAs 41% concentrator cells using bi-facial epigrowth,” in Proceedings of the 35th IEEE Photovoltaic Specialists Conf. (2010) pp.1259–1264.
  9. A. N. Matveev, Optics (Mir, 1988)
  10. J. S. Rayleigh, “On the reflection of vibrations at the confines of two media between which the transition is gradual” in Proceedings London Math. Soc.11 (1880) pp. 51–56.
  11. D. Poitras, J. A. Dobrowolski, “Toward perfect antireflection coatings. 2. theory,” Appl. Opt. 43(6), 1286–1295 (2004). [CrossRef] [PubMed]
  12. W. H. Southwell, “Coating design using very thin high- and low-index layers,” Appl. Opt. 24(4), 457–460 (1985). [CrossRef] [PubMed]
  13. D. J. Aiken, “High performance anti-reflection coatings for broadband multi-junction solar cells,” Sol. Energy Mater. Sol. Cells 64(4), 393–404 (2000). [CrossRef]
  14. M. F. Schubert, F. W. Mont, S. Chhajed, D. J. Poxson, J. K. Kim, E. F. Schubert, “Design of multilayer antireflection coatings made from co-sputtered and low-refractive-index materials by genetic algorithm,” Opt. Express 16(8), 5290–5298 (2008), http://www.opticsinfobase.org/oe/abstract.cfm?uri=oe-16-8-5290 . [CrossRef] [PubMed]
  15. D. J. Poxson, M. F. Schubert, F. W. Mont, E. F. Schubert, J. K. Kim, “Broadband omnidirectional antireflection coatings optimized by genetic algorithm,” Opt. Lett. 34(6), 728–730 (2009). [CrossRef] [PubMed]
  16. E. D. Palik, Handbook of Optical Constant of Solids (Academic Press, 1997).
  17. Sopra materials database, www.sopra-sa.com .
  18. D. Redfield, “Method for evaluation of antireflection coatings,” Solar Cells 3(1), 27–33 (1981). [CrossRef]
  19. M. Victoria, C. Domínguez, S. Askins, I. Antón, and G. Sala, “Optical characterization of FluidReflex concentrator,” in Proceedings of Int. Conf. on Concentrating Photovoltaic Systems (2010) pp. 118–121.
  20. I. Rey-Stolle, C. Algora, “Optimum antireflection coatings for heteroface AlGaAs/GaAs solar cells-Part II: The influence of uncertainties in the parameters of window and antireflection coatings,” J. Electron. Mater. 29(7), 992–999 (2000). [CrossRef]
  21. M. Victoria, C. Domínguez, I. Antón, G. Sala, “Comparative analysis of different secondary optical elements for aspheric primary lenses,” Opt. Express 17(8), 6487–6492 (2009), http://www.opticsinfobase.org/oe/abstract.cfm?uri=oe-17-8-6487 . [CrossRef] [PubMed]
  22. S. R. Kurtz and M. J. O’Neill, “Estimating and controlling chromatic aberration losses for two-junction, two-terminal devices in refractive concentrator systems,” in Proceedings of the 25th IEEE Photovoltaic Specialists Conf. (1996) pp. 361–364.
  23. L. W. James, “Effects of concentrator chromatic aberration on multi-junction cells,” in Proceedings of the 24th IEEE Photovoltaic Specialists Conf. (1994) pp. 1799–1802.
  24. I. García, C. Algora, I. Rey-Stolle, and B. Galiana, “Study of non-uniform light profiles on high concentration solar cells using quasi-3D distributed models,” in Proceedings of the 33rd IEEE Photovoltaic Specialists Conf. (2008) pp. 1–6.
  25. K. Nishioka, T. Takamoto, and W. Nakajima, “Analysis of triple-junction solar cell under concentration by SPICE,” in Proceedings of the 3rdWorld Conf. on Photovoltaic Energy Conversion (2003) pp. 869–872.
  26. M. Victoria, R. Herrero, C. Domínguez, I. Antón, S. Askins andG. Sala, “Characterization of the spatial distribution of irradiance and spectrum in concentrating photovoltaic systems and their effect on multi-junction solar cells,” Prog. Photovolt: Res. Appl. (2011) published online DOI: . [CrossRef]
  27. J. Jaus, P. Nitz, G. Peharz, G. Siefer, T. Schult, O. Wolf, M. Passig, T. Gandy, and A. W. Bett, “Second stage reflective and refractive optics for concentrator photovoltaics,” in Proceedings of the 33rd IEEE Photovoltaic Specialist Conf. (2008) pp. 1–5.
  28. V. Díaz, J. M. Ruíz, C. Algora, and J. Alonso, “Outdoor characterization of GaAs solar cell under tilted light for its encapsulation inside optic concentrator,” in Proceedings of the 27th Eur.Photovoltaic Sol. Energy Conf., (2001).
  29. C. Domínguez, I. Antón, G. Sala, “Solar simulator for concentrator photovoltaic systems,” Opt. Express 16(19), 14894–14901 (2008), http://www.opticsinfobase.org/oe/abstract.cfm?uri=oe-16-19-14894 . [CrossRef] [PubMed]
  30. C. Stevenson, P. R. Denton, G. Sadkhin, and V. Fridman, “Stability and Repeatability of 2-Layer Anti-Reflection Coatings,” Denton Vacuum technical paper, http://www.dentonvacuum.com/PDFs/Tech_papers/stab.pdf

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited