OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 7 — Mar. 26, 2012
  • pp: 8148–8154

Integrated liquid-core optical fibers for ultra-efficient nonlinear liquid photonics

K. Kieu, L. Schneebeli, R. A. Norwood, and N. Peyghambarian  »View Author Affiliations

Optics Express, Vol. 20, Issue 7, pp. 8148-8154 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (1455 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We have developed a novel integrated platform for liquid photonics based on liquid core optical fiber (LCOF). The platform is created by fusion splicing liquid core optical fiber to standard single-mode optical fiber making it fully integrated and practical - a major challenge that has greatly hindered progress in liquid-photonic applications. As an example, we report here the realization of ultralow threshold Raman generation using an integrated CS2 filled LCOF pumped with sub-nanosecond pulses at 532nm and 1064nm. The measured energy threshold for the Stokes generation is 1nJ, about three orders of magnitude lower than previously reported values in the literature for hydrogen gas, a popular Raman medium. The integrated LCOF platform opens up new possibilities for ultralow power nonlinear optics such as efficient white light generation for displays, mid-IR generation, slow light generation, parametric amplification, all-optical switching and wavelength conversion using liquids that have orders of magnitude larger optical nonlinearities compared with silica glass.

© 2012 OSA

OCIS Codes
(060.4370) Fiber optics and optical communications : Nonlinear optics, fibers
(160.4330) Materials : Nonlinear optical materials

ToC Category:
Fiber Optics and Optical Communications

Original Manuscript: January 11, 2012
Revised Manuscript: February 20, 2012
Manuscript Accepted: February 25, 2012
Published: March 23, 2012

K. Kieu, L. Schneebeli, R. A. Norwood, and N. Peyghambarian, "Integrated liquid-core optical fibers for ultra-efficient nonlinear liquid photonics," Opt. Express 20, 8148-8154 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. D. Psaltis, S. R. Quake, and C. Yang, “Developing optofluidic technology through the fusion of microfluidics and optics,” Nature442(7101), 381–386 (2006). [CrossRef] [PubMed]
  2. C. Monat, P. Domachuk, and B. J. Eggleton, “Integrated optofluidics: a new river of light,” Nat. Photonics1(2), 106–114 (2007). [CrossRef]
  3. E. P. Ippen, “Low-power quasi-CW Raman oscillator,” Appl. Phys. Lett.16(8), 303–305 (1970). [CrossRef]
  4. J. Stone, “CW Raman fiber amplifier,” Appl. Phys. Lett.26(4), 163–165 (1975). [CrossRef]
  5. F. Benabid, J. C. Knight, G. Antonopoulos, and P. S. J. Russell, “Stimulated Raman scattering in hydrogen-filled hollow-core photonic crystal fiber,” Science298(5592), 399–402 (2002). [CrossRef] [PubMed]
  6. T. T. Larsen, A. Bjarklev, D. S. Hermann, and J. Broeng, “Optical devices based on liquid crystal photonic bandgap fibres,” Opt. Express11(20), 2589–2596 (2003). [CrossRef] [PubMed]
  7. F. Benabid, F. Couny, J. C. Knight, T. A. Birks, and P. S. J. Russell, “Compact, stable and efficient all-fibre gas cells using hollow-core photonic crystal fibres,” Nature434(7032), 488–491 (2005). [CrossRef] [PubMed]
  8. J. Bethge, A. Husakou, F. Mitschke, F. Noack, U. Griebner, G. Steinmeyer, J. Herrmann, and Two-octave supercontinuum generation in a water-filled photonic crystal fiber,” Opt. Express18, 62306240 (2010).
  9. M. C. P. Huy, A. Baron, S. Lebrun, R. Frey, and P. Delaye, “Characterization of self-phase modulation in liquid filled hollow core photonic bandgap fibers,” J. Opt. Soc. Am. B27, 1886–1893 (2010).
  10. A. R. Chraplyvy and T. J. Bridges, “Infrared generation by means of multiple-order stimulated Raman scattering in CCl4- and CBrCl3-filled hollow silica fibers,” Opt. Lett.6(12), 632–633 (1981). [CrossRef] [PubMed]
  11. T. J. Bridges, A. R. Chraplyvy, J. G. Bergman, and R. M. Hart, “Broadband infrared generation in liquid-bromine-core optical fibers,” Opt. Lett.7(11), 566–568 (1982). [CrossRef] [PubMed]
  12. G. S. He, J. D. Bhawalkar, C. F. Zhao, C. K. Park, and P. N. Prasad, “Two-photon-pumped cavity lasing in a dye-solution-filled hollow-fiber system,” Opt. Lett.20(23), 2393–2395 (1995). [CrossRef] [PubMed]
  13. P. K. Dasgupta, Z. Genfa, S. K. Poruthoor, S. Caldwell, S. Dong, and S. Y. Liu, “High-sensitivity gas sensors based on gas-permeable liquid core waveguides and long-path absorbance detection,” Anal. Chem.70(22), 4661–4669 (1998). [CrossRef]
  14. T. Dallas and P. K. Dasgupta, “Light at the end of the tunnel: recent analytical applications of liquid-core waveguides,” TrAC-Trend, Anal. Chem.23, 385–392 (2004).
  15. S. E. Harris and A. V. Sokolov, “Subfemtosecond pulse generation by molecular modulation,” Phys. Rev. Lett.81(14), 2894–2897 (1998). [CrossRef]
  16. A. V. Sokolov, D. D. Yavuz, and S. E. Harris, “Subfemtosecond pulse generation by rotational molecular modulation,” Opt. Lett.24(8), 557–559 (1999). [CrossRef] [PubMed]
  17. H. S. Rong, A. S. Liu, R. Jones, O. Cohen, D. Hak, R. Nicolaescu, A. Fang, and M. Paniccia, “An all-silicon Raman laser,” Nature433(7023), 292–294 (2005). [CrossRef] [PubMed]
  18. F. Couny, F. Benabid, P. J. Roberts, P. S. Light, and M. G. Raymer, “Generation and photonic guidance of multi-octave optical-frequency combs,” Science318(5853), 1118–1121 (2007). [CrossRef] [PubMed]
  19. A. M. Jones, A. V. V. Nampoothiri, A. Ratanavis, T. Fiedler, N. V. Wheeler, F. Couny, R. Kadel, F. Benabid, B. R. Washburn, K. L. Corwin, and W. Rudolph, “Mid-infrared gas filled photonic crystal fiber laser based on population inversion,” Opt. Express19(3), 2309–2316 (2011). [CrossRef] [PubMed]
  20. N. Dudovich, D. Oron, and Y. Silberberg, “Single-pulse coherently controlled nonlinear Raman spectroscopy and microscopy,” Nature418(6897), 512–514 (2002). [CrossRef] [PubMed]
  21. J. X. Cheng and X. S. Xie, “Coherent anti-Stokes Raman scattering microscopy: instrumentation, theory and applications,” J. Phys. Chem. B108(3), 827–840 (2004). [CrossRef]
  22. C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. W. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy,” Science322(5909), 1857–1861 (2008). [CrossRef] [PubMed]
  23. G. P. Agrawal, Nonlinear Fiber Optics (Academic Press, San Diego, 2007).
  24. M. J. Colles, “Efficient stimulated Raman scattering from picosecond pulses,” Opt. Commun.1(4), 169–172 (1969). [CrossRef]
  25. N. Bloembergen and P. Lallemand, “Complex intensity-dependent index of refraction, frequency broadening of stimulated Raman lines, and stimulated Rayleigh scattering,” Phys. Rev. Lett.16(3), 81–84 (1966). [CrossRef]
  26. A. Bertoni, “Analysis of the efficiency of a third order cascaded Raman operating at the wavelength of 1.24 μm,” Opt. Quantum Electron.29(11), 1047–1058 (1997). [CrossRef]
  27. B. Min, T. J. Kippenberg, and K. J. Vahala, “Compact, fiber-compatible, cascaded Raman laser,” Opt. Lett.28(17), 1507–1509 (2003). [CrossRef] [PubMed]
  28. A. D. Yablon, Optical Fiber Fusion Splicing (Heidelberg, Germany: Springer-Verlag press, 2005).
  29. J. M. Hales, J. Matichak, S. Barlow, S. Ohira, K. Yesudas, J. L. Brédas, J. W. Perry, and S. R. Marder, “Design of polymethine dyes with large third-order optical nonlinearities and loss figures of merit,” Science327(5972), 1485–1488 (2010). [CrossRef] [PubMed]
  30. M. J. Thorpe, K. D. Moll, R. J. Jones, B. Safdi, and J. Ye, “Broadband cavity ringdown spectroscopy for sensitive and rapid molecular detection,” Science311(5767), 1595–1599 (2006). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited