OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 7 — Mar. 26, 2012
  • pp: 8161–8174

Fast source optimization involving quadratic line-contour objectives for the resist image

Jue-Chin Yu, Peichen Yu, and Hsueh-Yung Chao  »View Author Affiliations


Optics Express, Vol. 20, Issue 7, pp. 8161-8174 (2012)
http://dx.doi.org/10.1364/OE.20.008161


View Full Text Article

Enhanced HTML    Acrobat PDF (1309 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

In Abbe’s formulation, source optimization (SO) is often formulated into a linear or quadratic problem, depending on the choice of objective functions. However, the conventional approach for the resist image, involving a sigmoid transformation of the aerial image, results in an objective with a functional form. The applicability of the resist-image objective to SO or simultaneous source and mask optimization (SMO) is therefore limited. In this paper, we present a linear combination of two quadratic line-contour objectives to approximate the resist image effect for fast convergence. The line-contour objectives are based on the aerial image on drawn edges using a constant threshold resist model and that of pixels associated with an intensity minimum for side-lobe suppression. A conjugate gradient method is employed to assure the convergence to the global minimum within the number of iterations less than that of source variables. We further compare the optimized illumination with the proposed line-contour objectives to that with a sigmoid resist-image using a steepest decent method. The results show a 100x speedup with comparable image fidelity and a slightly improved process window for the two cases studied.

© 2012 OSA

OCIS Codes
(100.3190) Image processing : Inverse problems
(110.3960) Imaging systems : Microlithography
(110.1758) Imaging systems : Computational imaging
(110.3010) Imaging systems : Image reconstruction techniques

ToC Category:
Imaging Systems

History
Original Manuscript: January 19, 2012
Revised Manuscript: March 16, 2012
Manuscript Accepted: March 16, 2012
Published: March 23, 2012

Citation
Jue-Chin Yu, Peichen Yu, and Hsueh-Yung Chao, "Fast source optimization involving quadratic line-contour objectives for the resist image," Opt. Express 20, 8161-8174 (2012)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-7-8161


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. E. Rosenbluth, S. Bukofsky, C. Fonseca, M. Hibbs, K. Lai, A. Molless, R. N. Singh, and A. K. K. Wong, “Optimum mask and source patterns to print a given shape,” J. Microlithor. Microfabrication. Microsyst.1(1), 13–30 (2002).
  2. Y. Granik, “Source optimization for image fidelity and throughput,” J. Microlithor. Microfabrication. Microsyst.3, 509–522 (2004).
  3. A. E. Rosenbluth and N. Seong, “Global optimization of the illumination distribution to maximize integrated process window,” Proc. SPIE6154, 61540H (2006). [CrossRef]
  4. K. Tian, A. Krasnoperova, D. Melville, A. E. Rosenbluth, D. Gil, J. Tirapu-Azpiroz, K. Lai, S. Bagheri, C.-C. Chen, and B. Morgenfeld, “Benefits and trade-offs of global source optimization in optical lithography,” Proc. SPIE7274, 72740C, (2009). [CrossRef]
  5. K. Iwase, P. D. Bisschop, B. Laenens, Z. Li, K. Gronlund, P. V. Adrichem, and S. Hsu, “A new source optimization approach for 2x node logic,” Proc. SPIE8166, 81662A (2011). [CrossRef]
  6. Y. Cao, Y. W. Lu, L. Chen, and J. Ye, “Optimized hardware and software for fast, full chip simulation,” Proc. SPIE5754, 407–414 (2004). [CrossRef]
  7. S. Geisler, J. Bauer, U. Haak, U. Jagdhold, R. Pliquett, E. Matthus, R. Schrader, H. Wolf, U. Baetz, H. Beyer, and M. Niehoff, “Optical proximity correction for 0.13 μm SiGe:C BiCMOS,” Proc. SPIE6792, 679210(2008). [CrossRef]
  8. L. Pang, P. Hu, D. Peng, D. Chen, T. Cecil, L. He, G. Xiao, V. Tolani, T. Dam, K. H. Baik, and B. Gleason, “Source mask optimization (SMO) at full chip scale using inverse lithography technology (ILT) based on level set methods,” Proc. SPIE7520, 75200X (2009). [CrossRef]
  9. I. Torunoglu, E. Elsen, and A. Karakas, “A GPU-based full-chip source-mask optimization solution,” Proc. SPIE7640, 76401L (2010). [CrossRef]
  10. S. Jung, W. Sim, M. Jeong, J. Ser, S. Lee, S. W. Choi, X. Zhou, L. Luan, T. Cecil, D. Son, R. Gleason, and D. Kim, “Improving model prediction accuracy for ILT with aggressive SRAFs,” Proc. SPIE7823, 782311(2010). [CrossRef]
  11. C. Lim, V. Temchenko, and M. Niehoff, “Selective inverse lithography methodology,” Proc. SPIE7640, 764034 (2010). [CrossRef]
  12. Y. Ping, X. Li, S. Jang, D. Kwa, Y. Zhang, and R. Lugg, “Tolerance-based OPC and solution to MRC-constrained OPC,” Proc. SPIE7973, 79732M (2011). [CrossRef]
  13. T. Cecil, C. Ashton, D. Irby, L. Luan, D. H. Son, G. Xiao, X. Zhou, D. Kim, B. Gleason, H. J. Lee, W. J. Sim, M. J. Hong, S. G. Jung, S. S. Suh, and S. W. Lee, “Enhancing fullchip ILT mask synthesis capability for IC manufacturability,” Proc. SPIE7973, 79731C (2011). [CrossRef]
  14. Y. Deng, Y. Zou, K. Yoshimoto, Y. Ma, C. E. Tabery, J. Kye, L. Capodieci, and H. J. Levinson, “Considerations in source-mask optimization for logic applications,” Proc. SPIE7640, 76401J (2010). [CrossRef]
  15. T. Mülders, V. Domnenko, B. Küchler, T. Klimpel, H. J. Stock, A. A. Poonawala, K. N. Taravade, and W. A. Stanton, “Simultaneous source-mask optimization: a numerical combining method,” Proc. SPIE7823, 78233X (2010). [CrossRef]
  16. M. Fakhry, Y. Granik, K. Adam, and K. Lai, “Total source mask optimization: high-capacity, resist modeling, and production-ready mask solution,” Proc. SPIE8166, 81663M (2011). [CrossRef]
  17. D. Melville, A. Rosenbluth, K. Tian, K. Lai, S. Bagheri, J. Tirapu-Azpiroz, J. Meiring, S. Halle, G. McIntyre, T. Faure, D. Corliss, A. Krasnoperova, L. Zhuang, P. Strenski, A. Waechter, L. Ladanyi, F. Barahona, D. Scarpazza, J. Lee, T. Inoue, M. Sakamoto, H. Muta, A. Wagner, G. Burr, Y. Kim, E. Gallagher, M. Hibbs, A. Tritchkov, Y. Granik, M. Fakhry, K. Adam, G. Berger, M. Lam, A. Dave, and N. Cobb, “Demonstrating the benefits of source-mask optimization and enabling technologies through experiment and simulations,” Proc. SPIE7640, 764006 (2010). [CrossRef]
  18. K. Lai, M. Gabrani, D. Demaris, N. Casati, A. Torres, S. Sarkar, P. Strenski, S. Bagheri, D. Scarpazza, A. E. Rosenbluth, D. O. Melville, A. Wächter, J. Lee, V. Austel, M. Szeto-Millstone, K. Tian, F. Barahona, T. Inoue, and M. Sakamoto, “Design specific joint optimization of masks and sources on a very large scale,” Proc. SPIE7973, 797308 (2011). [CrossRef]
  19. J. C. Yu and P. Yu, “Impacts of cost functions on inverse lithography patterning,” Opt. Express18(22), 23331–23342 (2010). [CrossRef] [PubMed]
  20. A. Poonawala and P. Milanfar, “Prewrapping techniques in imaging: applications in nanotechnology and biotechnology,” Proc. SPIE5674, 114–127 (2005). [CrossRef]
  21. A. Poonawala and P. Milanfar, “OPC and PSM design using inverse lithography: a non-linear optimization approach,” Proc. SPIE6154, 1159–1172 (2006).
  22. A. Poonawala and P. Milanfar, “Mask design for optical microlithography--an inverse imaging problem,” IEEE Trans. Image Process.16(3), 774–788 (2007). [CrossRef] [PubMed]
  23. X. Ma and G. R. Arce, “Generalized inverse lithography methods for phase-shifting mask design,” Opt. Express15(23), 15066–15079 (2007). [CrossRef] [PubMed]
  24. S. H. Chan, A. K. Wong, and E. Y. Lam, “Initialization for robust inverse synthesis of phase-shifting masks in optical projection lithography,” Opt. Express16(19), 14746–14760 (2008). [CrossRef] [PubMed]
  25. N. Jia and E. Y. Lam, “Pixelated source mask optimization for process robustness in optical lithography,” Opt. Express19(20), 19384–19398 (2011). [CrossRef] [PubMed]
  26. B. J. Lin, “Optical methods for fine line lithography,” in Fine Line Lithography, ed. R. Newman (New York: North Holland, 1980).
  27. J. C. Yu and P. Yu, “Gradient-based fast source mask optimization (SMO),” Proc. SPIE7973, 787320 (2011).
  28. M. Born and E. Wolf, Principles of Optics, 7th(expanded) ed. (Cambridge University Press, 1999).
  29. A. K. Wong, Optical Imaging in Projection Microlithography (SPIE Press, 2005).
  30. J. W. Goodman, Introduction to Fourier Optics, 3rd ed. (McGraw-Hill Science/Engineering/Math, 2005).
  31. C. Mack, Fundamental Principles of Optical Lithography: The Science of Microfabrication (John Wiley and Sons, 2008).
  32. R. C. Gonzalez and R. E. Woods, Digital Image Processing, 3rd ed. (Prentice Hall, 2007).
  33. D. S. Abrams and L. Pang, “Fast inverse lithography technology,” Proc. SPIE6154, 534–542 (2006).
  34. J. C. Yu, P. Yu, and H. Y. Chao, “Wavefront-based pixel inversion algorithm for generation of subresolution assist features,” J. Micro./Nanolith. MEMS MOEMS.10, 043014 (2011).
  35. S. I. Sayegh, Image restoration and image design in non-linear optical systems, PhD Thesis (Univ. of Wisconsin, Madison, 1982).
  36. L. N. Trefethen and D. Bau III, Numerical Linear Algebra (SIAM, 1997).
  37. E. K. P. Chong and S. H. Żak, An Introduction to Optimization, 3rd ed. (John Wiley and Sons, 2008).
  38. X. Ma and G. R. Arce, “Pixel-based OPC optimization based on conjugate gradients,” Opt. Express19(3), 2165–2180 (2011). [CrossRef] [PubMed]
  39. X. Ma and G. R. Arce, “Generalized inverse lithography methods for phase-shifting mask design,” Opt. Express15(23), 15066–15079 (2007). [CrossRef] [PubMed]
  40. Y. Shen, N. Jia, N. Wong, and E. Y. Lam, “Robust level-set-based inverse lithography,” Opt. Express19(6), 5511–5521 (2011). [CrossRef] [PubMed]
  41. C. Alleaume, E. Yesilada, V. Farys, L. Depre, V. Arnoux, Z. Li, Y. Trouiller, and A. Serebriakov, “A systematic study of source error in source mask optimization,” Proc. SPIE7823, 782312, 782312-7 (2010). [CrossRef]
  42. T. Matsuyama, N. Kita, T. Nakashima, O. Tanitsu, and S. Owa, “Tolerancing analysis of customized illumination for practical applications of source and mask optimization,” Proc. SPIE7640, 764007, 764007-10 (2010). [CrossRef]
  43. L. Xu, X. Peng, Z. Guo, J. Miao, and A. Asundi, “Imaging analysis of digital holography,” Opt. Express13(7), 2444–2452 (2005). [CrossRef] [PubMed]
  44. I. Moon and B. Javidi, “Shape tolerant three-dimensional recognition of biological microorganisms using digital holography,” Opt. Express13(23), 9612–9622 (2005). [CrossRef] [PubMed]
  45. D. J. Brady, K. Choi, D. L. Marks, R. Horisaki, and S. Lim, “Compressive holography,” Opt. Express17(15), 13040–13049 (2009). [CrossRef] [PubMed]
  46. S. Tamulevicius, A. Guobiene, G. Janusas, A. Palevicius, V. Ostasevicius, and M. Andrulevicius, “Optical characterization of diffractive optical elements replicated in polymers,” J. Microlithor. Microfabrication. Microsyst.5, 013004 (2006).
  47. G. D. M. Jeffries, G. Milne, Y. Zhao, C. Lopez-Mariscal, and D. T. Chiu, “Optofluidic generation of Laguerre-Gaussian beams,” Opt. Express17(20), 17555–17562 (2009). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited