OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 7 — Mar. 26, 2012
  • pp: 8175–8185

Light harvesting improvement of organic solar cells with self-enhanced active layer designs

Luzhou Chen, Wei E.I. Sha, and Wallace C.H. Choy  »View Author Affiliations

Optics Express, Vol. 20, Issue 7, pp. 8175-8185 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (1354 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We present designs of organic solar cells (OSCs) incorporating periodically arranged gradient type active layer. The designs can enhance light harvesting with patterned organic materials themselves (i.e. self-enhanced active layer design) to avoid degrading electrical performances of OSCs in contrast to introducing inorganic concentrators into OSC active layers such as silicon and metallic nanostructures. Geometry of the OSC is fully optimized by rigorously solving Maxwell’s equations with fast and efficient scattering matrix method. Optical absorption is accessed by a volume integral of the active layer excluding the metallic absorption. Our numerical results show that the OSC with a self-enhanced active layer, compared with the conventional planar active layer configuration, has broadband and wide-angle range absorption enhancement due to better geometric impedance matching and prolonged optical path. This work provides a theoretical foundation and engineering reference for high performance OSC designs.

© 2012 OSA

OCIS Codes
(350.6050) Other areas of optics : Solar energy
(230.5298) Optical devices : Photonic crystals

ToC Category:
Solar Energy

Original Manuscript: February 2, 2012
Revised Manuscript: March 16, 2012
Manuscript Accepted: March 16, 2012
Published: March 23, 2012

Luzhou Chen, Wei E.I. Sha, and Wallace C.H. Choy, "Light harvesting improvement of organic solar cells with self-enhanced active layer designs," Opt. Express 20, 8175-8185 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. E. Yablonovitch, G. Cody, “Intensity enhancement in textured optical sheets for solar cells,” IEEE Trans. Electron. Dev. 29(2), 300–305 (1982). [CrossRef]
  2. E. Yablonovitch, “Statistical ray optics,” J. Opt. Soc. Am. 72(7), 899–907 (1982). [CrossRef]
  3. S. B. Rim, S. Zhao, S. R. Scully, M. D. McGehee, P. Peumans, “An effective light trapping configuration for thin-film for solar cells,” Appl. Phys. Lett. 91(24), 243501 (2007). [CrossRef]
  4. W. Cao, J. D. Myers, Y. Zheng, W. T. Hammond, E. Wrzesniewski, J. Xue, “Enhancing light harvesting in organic solar cells with pyramidal rear reflectors,” Appl. Phys. Lett. 99(2), 023306 (2011). [CrossRef]
  5. J. Liu, M. A. G. Namboothiry, D. L. Carroll, “Fiber-based architectures for organic photovoltaics,” Appl. Phys. Lett. 90(6), 063501 (2007). [CrossRef]
  6. P. Bermel, C. Luo, L. Zeng, L. C. Kimerling, J. D. Joannopoulos, “Improving thin-film crystalline silicon solar cell efficiencies with photonic crystals,” Opt. Express 15(25), 16986–17000 (2007). [CrossRef] [PubMed]
  7. D. Zhou, R. Biswas, “Photonic crystal enhanced light-trapping in thin film solar cells,” J. Appl. Phys. 103(9), 093102 (2008). [CrossRef]
  8. S. B. Mallick, M. Agrawal, P. Peumans, “Optimal light trapping in ultra-thin photonic crystal crystalline silicon solar cells,” Opt. Express 18(6), 5691–5706 (2010). [CrossRef] [PubMed]
  9. Y. Park, E. Drouard, O. El Daif, X. Letartre, P. Viktorovitch, A. Fave, A. Kaminski, M. Lemiti, C. Seassal, “Absorption enhancement using photonic crystals for silicon thin film solar cells,” Opt. Express 17(16), 14312–14321 (2009). [CrossRef] [PubMed]
  10. D. Duché, L. Escoubas, J. J. Simon, P. Torchio, W. Vervisch, F. Flory, “Slow Bloch modes for enhancing the absorption of light in thin films for photovoltaic cells,” Appl. Phys. Lett. 92(19), 193310 (2008). [CrossRef]
  11. A. Mihi, H. Míguez, “Origin of light-harvesting enhancement in colloidal-photonic-crystal-based dye-sensitized solar cells,” J. Phys. Chem. B 109(33), 15968–15976 (2005). [CrossRef] [PubMed]
  12. J. R. Tumbleston, D. H. Ko, E. T. Samulski, R. Lopez, “Absorption and quasiguided mode analysis of organic solar cells with photonic crystal photoactive layers,” Opt. Express 17(9), 7670–7681 (2009). [CrossRef] [PubMed]
  13. D. H. Ko, J. R. Tumbleston, L. Zhang, S. Williams, J. M. DeSimone, R. Lopez, E. T. Samulski, “Photonic crystal geometry for organic solar cells,” Nano Lett. 9(7), 2742–2746 (2009). [CrossRef] [PubMed]
  14. A. Chutinan, N. P. Kherani, S. Zukotynski, “High-efficiency photonic crystal solar cell architecture,” Opt. Express 17(11), 8871–8878 (2009). [CrossRef] [PubMed]
  15. R. Biswas, C. Xu, “Nano-crystalline silicon solar cell architecture with absorption at the classical 4n2 limit,” Opt. Express 19(S4Suppl 4), A664–A672 (2011). [CrossRef] [PubMed]
  16. W. Zhou, M. Tao, L. Chen, H. Yang, “Microstructured surface design for omnidirectional antireflection coatings on solar cells,” J. Appl. Phys. 102(10), 103105 (2007). [CrossRef]
  17. J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic Crystals: Molding the Flow of Light, 2nd ed. (Princeton University Press, Princeton, 2008).
  18. X. He, F. Gao, G. Tu, D. Hasko, S. Hüttner, U. Steiner, N. C. Greenham, R. H. Friend, W. T. S. Huck, “Formation of nanopatterned polymer blends in photovoltaic devices,” Nano Lett. 10(4), 1302–1307 (2010). [CrossRef] [PubMed]
  19. D. Cheyns, K. Vasseur, C. Rolin, J. Genoe, J. Poortmans, P. Heremans, “Nanoimprinted semiconducting polymer films with 50 nm features and their application to organic heterojunction solar cells,” Nanotechnology 19(42), 424016 (2008). [CrossRef] [PubMed]
  20. D. D. S. Fung, L. Qiao, W. C. H. Choy, C. Wang, W. E. I. Sha, F. Xie, S. He, “Optical and electrical properties of efficiency enhanced polymer solar cells with Au nanoparticles in PEDOT-PSS Layer,” J. Mater. Chem., doi:. [CrossRef]
  21. X. W. Chen, W. C. H. Choy, S. He, P. C. Chui, “Comprehensive analysis and optimal design of top-emitting organic light-emitting devices,” J. Appl. Phys. 101, 113107 (2007). [CrossRef] [PubMed]
  22. E. D. Palik, Handbook of Optical Constants of Solids (Academic Press, New York, 1998).
  23. A. D. Rakic, A. B. Djurisic, J. M. Elazar, M. L. Majewski, “Optical properties of metallic films for vertical-cavity optoelectronic devices,” Appl. Opt. 37(22), 5271–5283 (1998). [CrossRef] [PubMed]
  24. D. M. Whittaker, I. S. Culshaw, “Scattering-matrix treatment of patterned multiplayer photonic structures,” Phys. Rev. B 60(4), 2610–2618 (1999). [CrossRef]
  25. S. G. Tikhodeev, A. L. Yablonskii, E. A. Muljarov, N. A. Gippius, T. Ishihara, “Quasiguided modes and optical properties of photonic crystal slabs,” Phys. Rev. B 66(4), 045102 (2002). [CrossRef]
  26. A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method, 3rd ed. (Artech House Publishers, Boston, 2005).
  27. G. Li, V. Shrotriys, J. Huang, Y. Yao, T. Moriarty, K. Emery, Y. Yang, “High-efficiency solution processable polymer photovoltaic cells by self-organization of polymer blends,” Nat. Mater. 4(11), 864–868 (2005). [CrossRef]
  28. C. D. Wang, W. C. H. Choy, “Efficient hole collection by introducing ultra-thin UV-ozone treated Au in polymer solar cells,” Sol. Energy Mater. Sol. Cells 95, 904–908 (2011). [CrossRef]
  29. S. Bavel, E. Sourty, G. With, K. Frolic, J. Loos, “Relation between photoactive layer thickness, 3D morphology, and device performance in P3HT/PCBM bulk-heterojunction solar cells,” Macromolecules 42(19), 7396–7403 (2009). [CrossRef]
  30. M. Born and E. Wolf, Principles of Optics (Pergamon Press, London, 1970).
  31. J. Nelson, The Physics of Solar Cells (Imperial College Press, London, 2003).
  32. D. Poitras, J. A. Dobrowolski, “Toward perfect antireflection coatings. 2. Theory,” Appl. Opt. 43(6), 1286–1295 (2004). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited