OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 7 — Mar. 26, 2012
  • pp: 8192–8198

Transmission-grating-photomasked transient spin grating and its application to measurement of electron-spin ambipolar diffusion in (110) GaAs quantum wells

Ke Chen, Wenfang Wang, Jingda Wu, D. Schuh, W. Wegscheider, T. Korn, and Tianshu Lai  »View Author Affiliations

Optics Express, Vol. 20, Issue 7, pp. 8192-8198 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (972 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A circular dichromatic transient absorption difference spectroscopy of transmission-grating-photomasked transient spin grating is developed and formularized. It is very simple in experimental setup and operation, and has high detection sensitivity. It is applied to measure spin diffusion dynamics and excited electron density dependence of spin ambipolar diffusion coefficient in (110) GaAs quantum wells. It is found that the spin ambipolar diffusion coefficient of (110) and (001) GaAs quantum wells is close to each other, but has an opposite dependence tendency on excited electron density. This spectroscopy is expected to have extensive applicability in the measurement of spin transport.

© 2012 OSA

OCIS Codes
(050.2770) Diffraction and gratings : Gratings
(300.1030) Spectroscopy : Absorption
(300.6500) Spectroscopy : Spectroscopy, time-resolved
(320.7130) Ultrafast optics : Ultrafast processes in condensed matter, including semiconductors

ToC Category:

Original Manuscript: February 27, 2012
Manuscript Accepted: March 13, 2012
Published: March 23, 2012

Ke Chen, Wenfang Wang, Jingda Wu, D. Schuh, W. Wegscheider, T. Korn, and Tianshu Lai, "Transmission-grating-photomasked transient spin grating and its application to measurement of electron-spin ambipolar diffusion in (110) GaAs quantum wells," Opt. Express 20, 8192-8198 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. I. Žutić, J. Fabian, S. Das Sarma, “Spintronics: Fundamentals and applications,” Rev. Mod. Phys. 76(2), 323–410 (2004). [CrossRef]
  2. A. R. Cameron, P. Riblet, A. Miller, “Spin gratings and the measurement of electron drift mobility in multiple quantum well semiconductors,” Phys. Rev. Lett. 76(25), 4793–4796 (1996). [CrossRef] [PubMed]
  3. K. Jarasiunas, V. Gudelis, R. Aleksiejunas, M. Sudzius, S. Iwamoto, M. Nishioka, T. Shimura, K. Kuroda, Y. Arakawa, “Picosecond dynamics of spin-related optical nonlinearities in InxGa1-xAs multiple quantum wells at 1064 nm,” Appl. Phys. Lett. 84(7), 1043–1045 (2004). [CrossRef]
  4. C. P. Weber, N. Gedik, J. E. Moore, J. Orenstein, J. Stephens, D. D. Awschalom, “Observation of spin Coulomb drag in a two-dimensional electron gas,” Nature 437(7063), 1330–1333 (2005). [CrossRef] [PubMed]
  5. S. G. Carter, Z. Chen, S. T. Cundiff, “Optical measurement and control of spin diffusion in n-doped GaAs quantum wells,” Phys. Rev. Lett. 97(13), 136602 (2006). [CrossRef] [PubMed]
  6. H.-L. Yu, X.-M. Zhang, P.-F. Wang, H.-Q. Ni, Z.-C. Niu, T. S. Lai, “Measuring spin diffusion of electrons in bulk n-GaAs using circularly dichromatic absorption difference spectroscopy of spin gratings,” Appl. Phys. Lett. 94(20), 202109 (2009). [CrossRef]
  7. H. Zhao, M. Mower, G. Vignale, “Ambipolar spin diffusion and D’yakonov-D’perel’ spin relaxation in GaAs quantum wells,” Phys. Rev. B 79(11), 115321 (2009). [CrossRef]
  8. H.-L. Yu, X.-M. Zhang, T. S. Lai, “Study of electron spin diffusion transport in intrinsic GaAs quantum wells by time- and space-resolved absorption spectroscopy,” Acta Phys. Sin. 58, 3543–3547 (2009).
  9. D. D. Awschalom, J. M. Kikkawa, “Lateral drag of spin coherence in gallium arsenide,” Nature 397(6715), 139–141 (1999). [CrossRef]
  10. M. Furis, D. L. Smith, S. Kos, E. S. Garlid, K. S. M. Reddy, C. J. Palmstrøm, P. A. Crowell, S. A. Crooker, “Local Hanle-effect studies of spin drift and diffusion in n:GaAs epilayers and spin transport devices,” New J. Phys. 9(9), 347 (2007). [CrossRef]
  11. K. Chen, W. Wang, J. Chen, J. Wen, T. Lai, “A transmission-grating-modulated pump-probe absorption spectroscopy and demonstration of diffusion dynamics of photoexcited carriers in bulk intrinsic GaAs film,” Opt. Express 20(4), 3580–3585 (2012). [CrossRef] [PubMed]
  12. A. Miller, R. J. Manning, P. K. Milsom, D. C. Hutchings, D. W. Crust‡, K. Woodbridge, “Transient grating studies of excitonic optical nonlinearities in GaAs/AlGaAs multiple-quantum-well structures,” J. Opt. Soc. Am. B 6(4), 567–578 (1989). [CrossRef]
  13. T. S. Lai, X. D. Liu, H. H. Xu, Z. X. Jiao, L. Lei, J. H. Wen, W. Z. Lin, “Elliptically polarized absorption spectroscopy and observation of spin coherence in intrinsic GaAs,” Appl. Phys. Lett. 87(26), 262110 (2005). [CrossRef]
  14. Y. Ohno, R. Terauchi, T. Adachi, F. Matsukura, H. Ohno, “Spin relaxation in GaAs(110) quantum wells,” Phys. Rev. Lett. 83(20), 4196–4199 (1999). [CrossRef]
  15. S. Döhrmann, D. Hägele, J. Rudolph, M. Bichler, D. Schuh, M. Oestreich, “Anomalous spin dephasing in (110) GaAs quantum wells: anisotropy and intersubband effects,” Phys. Rev. Lett. 93(14), 147405 (2004). [CrossRef] [PubMed]
  16. R. Völkl, M. Griesbeck, S. A. Tarasenko, D. Schuh, W. Wegscheider, C. Schüller, T. Korn, “Spin dephasing and photoinduced spin diffusion in a high-mobility two-dimensional electron system embedded in a GaAs-(Al, Ga)As quantum well grown in the [110] direction,” Phys. Rev. B 83(24), 241306 (2011). [CrossRef]
  17. V. V. Bel’kov, P. Olbrich, S. A. Tarasenko, D. Schuh, W. Wegscheider, T. Korn, C. Schüller, D. Weiss, W. Prettl, S. D. Ganichev, “Symmetry and spin dephasing in (110)-grown quantum wells,” Phys. Rev. Lett. 100(17), 176806 (2008). [CrossRef] [PubMed]
  18. M. Q. Weng, M. W. Wu, “Kinetic theory of spin transport in n-type semiconductor quantum wells,” J. Appl. Phys. 93(1), 410–420 (2003). [CrossRef]
  19. M. Q. Weng, M. W. Wu, H. L. Cui, “Spin relaxation in n-type GaAs quantum wells with transient spin grating,” J. Appl. Phys. 103(6), 063714 (2008). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited