OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 8 — Apr. 9, 2012
  • pp: 8240–8249

Distributed flow sensing using optical hot -wire grid

Tong Chen, Qingqing Wang, Botao Zhang, Rongzhang Chen, and Kevin P. Chen  »View Author Affiliations

Optics Express, Vol. 20, Issue 8, pp. 8240-8249 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (3473 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



An optical hot-wire flow sensing grid is presented using a single piece of self-heated optical fiber to perform distributed flow measurement. The flow-induced temperature loss profiles along the fiber are interrogated by the in-fiber Rayleigh backscattering, and spatially resolved in millimeter resolution using optical frequency domain reflectometry (OFDR). The flow rate, position, and flow direction are retrieved simultaneously. Both electrical and optical on-fiber heating were demonstrated to suit different flow sensing applications.

© 2012 OSA

OCIS Codes
(060.2370) Fiber optics and optical communications : Fiber optics sensors
(280.2490) Remote sensing and sensors : Flow diagnostics

ToC Category:

Original Manuscript: December 8, 2011
Revised Manuscript: February 28, 2012
Manuscript Accepted: February 28, 2012
Published: March 26, 2012

Tong Chen, Qingqing Wang, Botao Zhang, Rongzhang Chen, and Kevin P. Chen, "Distributed flow sensing using optical hot -wire grid," Opt. Express 20, 8240-8249 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. H. H. Bruun, Hot-Wire Anemometry: Principles and Signal Analysis (Oxford University Press, 1995), Chap. 2.
  2. Y-H. Wang, C-P. Chen, C-M. Chang, C-P. Lin, C-H. Lin, L-M. Fu, and C-Y. Lee, “MEMS-based flow sensors,” Microfluid Nanofluid6(3), 333–346 (2009). [CrossRef]
  3. G. D. Byrne, S. W. James, and R. P. Tatam, “A Bragg grating based fibre optic reference beam laser Doppler anemometer,” Meas. Sci. Technol.12(7), 909–913 (2001).
  4. O. Frazão, P. Caldas, F. M. Araújo, L. A. Ferreira, and J. L. Santos, “Optical flowmeter using a modal interferometer based on a single nonadiabatic fiber taper,” Opt. Lett.32(14), 1974–1976 (2007). [CrossRef] [PubMed]
  5. L. J. Cashdollar and K. P. Chen, “Fiber Bragg grating flow sensors powered by in-fiber light,” IEEE Sens. J.5(6), 1327–1331 (2005). [CrossRef]
  6. C. Jewart, B. McMillen, S. K. Cho, and K. P. Chen, “X-probe flow sensor using self-powered active fiber Bragg gratings,” Sen. Actuators A Phys.127(1), 63–68 (2006).
  7. P. Caldas, P. A. S. Jorge, G. Rego, O. Frazão, J. L. Santos, L. A. Ferreira, and F. Araújo, “Fiber optic hot-wire flowmeter based on a metallic coated hybrid long period grating/fiber Bragg grating structure,” Appl. Opt.50(17), 2738–2743 (2011). [CrossRef] [PubMed]
  8. S. Gao, A. P. Zhang, H. Y. Tam, L. H. Cho, and C. Lu, “All-optical fiber anemometer based on laser heated fiber Bragg gratings,” Opt. Express19(11), 10124–10130 (2011). [CrossRef] [PubMed]
  9. W. Eickhoff and R. Ulrich, “Optical frequency domain reflectometry in single-mode fiber,” Appl. Phys. Lett.39(9), 693–695 (1981). [CrossRef]
  10. U. Glombitza and E. Brinkmeyer, “Coherent frequency-domain reflectometry for characterization of single-mode integrated-optical waveguides,” J. Lightwave Technol.11(8), 1377–1384 (1993). [CrossRef]
  11. B. Soller, D. Gifford, M. Wolfe, and M. Froggatt, “High resolution optical frequency domain reflectometry for characterization of components and assemblies,” Opt. Express13(2), 666–674 (2005). [CrossRef] [PubMed]
  12. S. T. Kreger, D. K. Gifford, M. E. Froggatt, B. J. Soller, and M.S. Wolfe, “High resolution distributed strain or temperature measurements in single- and multimode fiber using swept-wavelengh interferometry,” Optical Fiber Sensors, ThE42 (2006).
  13. A. K. Sang, M. E. Froggatt, D. K. Grifford, S. T. Kreger, and B. D. Dickerson, “One centimeter spatial resolution temperature measurements in a nuclear reactor using Rayleigh scatter in optical fiber,” IEEE Sens. J.8(7), 1375–1380 (2008). [CrossRef]
  14. M. Froggatt and J. Moore, “High-spatial-resolution distributed strain measurement in optical fiber with Rayleigh scatter,” Appl. Opt.37(10), 1735–1740 (1998). [CrossRef] [PubMed]
  15. R. R. J. Maier, W. N. MacPherson, J. S. Barton, S. McCulloch, and B. J. S. Jones, “Distributed sensing using Rayleigh scatter in polarization-maintaining fibres for transverse load sensing,” Meas. Sci. Technol.21(9), 094019 (2010). [CrossRef]
  16. T. Chen, Q. Wang, R. Chen, B. Zhang, C. Jewart, K. P. Chen, M. Maklad, and P. R. Swinehart, “Distributed high temperature pressure sensing using air-hole microstructural fibers,” Opt. Lett., 37 (to be published).
  17. D. Coric, R. Chatton, H. G. Limberger, and R. P. Salathe, “High resolution liquid-level sensor based on fiber Bragg-gratings in attenuation fiber and optical low-coherence reflectometry,” in Optical Fiber Sensors, 2006, Mexico.
  18. D. Coric, R. Chatton, Y. Luchessa, H. G. Limberger, R. Salathe, and F. Caloz, “Light-controlled reconfigurable fiber Bragg grating written in attenation fiber,” in National Fiber Optic Engineers Conference, 2007, paper JWA17.
  19. T. Chen, D. Xu, M. Buric, M. Maklad, P. R. Swinhart, and K. P. Chen, “Self-heated all-fiber sensing system for cryogenic environments,” Meas. Sci. Technol.21(9), 094036 (2010). [CrossRef]
  20. F. Ye, T. Chen, D. Xu, K. P. Chen, B. Qi, and L. Qian, “Cryogenic fluid level sensors multiplexed by frequency-shifted interferometry,” Appl. Opt.49(26), 4898–4905 (2010). [CrossRef] [PubMed]
  21. T. Chen, M. Maklad, P. R. Swinhart, and K. P. Chen, “Self-heated optical fiber sensor array for cryogenic fluid level sensing,” IEEE Sens. J,11, 1051 (2011).
  22. M. Buric, T. Chen, M. Maklad, P. R. Swinehart, and K. P. Chen, “Multiplexable low-temperature fiber Bragg grating hydrogen sensors,” IEEE Photon. Technol. Lett.21(21), 1594–1596 (2009). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited