OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 8 — Apr. 9, 2012
  • pp: 8250–8255

Redundancy in Cantor Diffractals

Rupesh Verma, Varsha Banerjee, and Paramasivam Senthilkumaran  »View Author Affiliations

Optics Express, Vol. 20, Issue 8, pp. 8250-8255 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (4043 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Cantor diffractals are waves that have encountered a Cantor grating. In this paper, we report an important property of Cantor diffractals, namely that of redundancy. We observe that the Fraunhofer diffraction pattern comprises of several bands, each containing complete information about the fractal aperture. This redundancy allows for a faithful reconstruction of the Cantor grating by an inverse Fourier transformation of an arbitrary band.

© 2012 OSA

OCIS Codes
(050.0050) Diffraction and gratings : Diffraction and gratings
(050.1220) Diffraction and gratings : Apertures
(090.0090) Holography : Holography
(290.5880) Scattering : Scattering, rough surfaces

ToC Category:
Diffraction and Gratings

Original Manuscript: January 5, 2012
Revised Manuscript: March 1, 2012
Manuscript Accepted: March 1, 2012
Published: March 26, 2012

Rupesh Verma, Varsha Banerjee, and Paramasivam Senthilkumaran, "Redundancy in Cantor Diffractals," Opt. Express 20, 8250-8255 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. B. B. Mandelbrot, The Fractal Geometry of Nature (W. H. Freeman, New York, 1982).
  2. K. Falconer, Fractal Geometry: Mathematical Foundations and Applications (Wiley, 2003). [CrossRef]
  3. H. O. Peitgen, H. Jurgens, and D. Saupe, Chaos and Fractals (New Frontiers of Science, Springer, 2004).
  4. M. V. Berry, “Diffractals,” J. Phys. A: Math. Gen. 12, 781–797 (1979). [CrossRef]
  5. E. N. Leith and J. Upatnieks, “Wavefront reconstruction with diffused illumination and three dimensional objects,” J. Opt. Soc. Am. 54, 1295–1301 (1964). [CrossRef]
  6. H. J. Gerritsen, W. J. Hannan, and E. G. Ramberg, “Elimination of speckle noise in holograms with redundancy,” Appl. Opt. 7, 2301–2311 (1968). [CrossRef] [PubMed]
  7. D. Bak, S. P. Kim, S. K. Kim, K. -S. Soh, and J. H. Yee, “Fractal diffraction grating,” 1–7 http://arxiv.org/abs/physics/9802007 .
  8. Hou Bo, Gu Xu, W. Wen, and G. K. L. Wong, “Diffraction by an optical fractal grating,” Appl. Phys. Lett. 85, 6125–6127 (2004). [CrossRef]
  9. G. Chabassier, B. Angeli, F. Heliodore, and A. Le Mehaute, “Optical wave diffraction on fractal objects,” Pure Appl. Opt. 1, 41–54 (1992). [CrossRef]
  10. M. Born, Principles of Optics (Pergamon Press, Oxford, 1980).
  11. J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, 1996).
  12. C. Allain and M. Cloitre, “Optical diffraction on fractals,” Phys. Rev. B 33, 3566–3569 (1986). [CrossRef]
  13. C. Allain and M. Cloitre, “Spatial spectrum of a general family of self-similar arrays,” Phys. Rev. A 36, 5751–5757 (1987). [CrossRef] [PubMed]
  14. D. A. Hamburger-Lidar, “Elastic scattering by deterministic and random fractals: Self-affinity of the diffraction spectrum,” Phys. Rev. E 54, 354–370 (1996). [CrossRef]
  15. M. Lehman, “Fractal diffraction grating built through rectangular domains,” Opt. Commun. 195, 11–26 (2001). [CrossRef]
  16. C. Guerin and M. Holschneider, “Scattering on fractal measures,” J. Phys. A 29, 7651–7667 (1996). [CrossRef]
  17. B. Dubuc, J. F. Quiniou, C. R. Carmes, C. Tricot, and S. W. Zucker, “Evaluating the fractal dimensions of profiles,” Phys. Rev. A 39, 1500–1512 (1989). [CrossRef] [PubMed]
  18. D. C. Skigin, R. A. Depine, J. A. Monsoriu, and W. D. Furlan, “Diffraction by fractal metallic supergratings,” Opt. Express 15, 15628–15636 (2007). [CrossRef] [PubMed]
  19. A. Ghatak, Optics (Tata McGraw-Hill, 2007).
  20. See “Application scenarios, tutorials, modules, and snippets” provided by LightTrans VirtualLab.
  21. We have observed redundancy in other deterministic fractals such as the Sierpinski carpet and the Gosper curve.
  22. J. A. Monsoriu, G. Saavedra, and W. D. Furlan, “Fractal zone plates with variable lacunarity,” Opt. Express 12, 4227–4234 (2004). [CrossRef] [PubMed]
  23. F. Gimenez, J. A. Monsoriu, W. D. Furlan, and Amparo Pons, “Fractal photon sieve,” Opt. Express 14, 11958–11963 (2006). [CrossRef] [PubMed]
  24. G. Saavedra, W. D. Furlan, and J. A. Monsoriu, “Fractal zone plates,” Opt. Lett. 28, 971–973 (2003). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited