OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 8 — Apr. 9, 2012
  • pp: 8256–8269

Analytical calculation of nonreciprocal phase shifts and comparison analysis of enhanced magneto-optical waveguides on SOI platform

Haifeng Zhou, Jingyee Chee, Junfeng Song, and Guoqiang Lo  »View Author Affiliations


Optics Express, Vol. 20, Issue 8, pp. 8256-8269 (2012)
http://dx.doi.org/10.1364/OE.20.008256


View Full Text Article

Enhanced HTML    Acrobat PDF (2146 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Transfer matrices for one-dimensional (1-D) multi-layered magneto-optical (MO) waveguides are formulated to analytically calculate the nonreciprocal phase shifts (NRPS). The Cauchy contour integration (CCI) method is introduced in detail to calculate the two complex roots of the transcendental equation corresponding to backward and forward waves. By virtue of perturbation theory and the variational principle, we also present the general upper limit of NRPSs in 1-D MO waveguides. These analytical results are applied to compare silicon-on-insulator (SOI) based MO waveguides. First, a three-layered waveguide system with MO medium is briefly examined and discussed to check the validity and efficiency of the above theory. Then we revisited the reported low-index-gap-enhanced NRPSs in MO waveguides and obtained substantially different results. Finally, the potential of common plasmonic waveguides to enhance the nonreciprocal effect is investigated by studying different waveguides composed of Metal, MO medium and dielectrics. Our study shows that the reasonable NRPSs can be optimized to some extent but not as much as claimed in previous publications.

© 2012 OSA

OCIS Codes
(130.2790) Integrated optics : Guided waves
(130.3120) Integrated optics : Integrated optics devices
(230.3810) Optical devices : Magneto-optic systems
(230.4170) Optical devices : Multilayers
(240.6680) Optics at surfaces : Surface plasmons

ToC Category:
Integrated Optics

History
Original Manuscript: January 4, 2012
Revised Manuscript: January 26, 2012
Manuscript Accepted: January 26, 2012
Published: March 26, 2012

Citation
Haifeng Zhou, Jingyee Chee, Junfeng Song, and Guoqiang Lo, "Analytical calculation of nonreciprocal phase shifts and comparison analysis of enhanced magneto-optical waveguides on SOI platform," Opt. Express 20, 8256-8269 (2012)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-8-8256


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. Z. F. Yu and S. H. Fan, “Complete optical isolation created by indirect interband photonic transitions,” Nature Photon. 3, 91–94 (2009). [CrossRef]
  2. L. Feng, M. Ayache, J. Q. Huang, Y. L. Xu, M. H. Lu, Y. F. Chen, Y. Fainman, and A. Scherer, “Nonreciprocal light propagation in a silicon photonic circuit,” Science333, 729–733 (2011). [CrossRef] [PubMed]
  3. R. L. Espinola, T. Izuhara, M. C. Tsai, R. M. Osgood, and H. Dotsch, “Magneto-optical noreciprocal phase shift in garnet/silicon-on-insulator waveguides,” Opt. Lett.29, 941–943 (2004). [CrossRef] [PubMed]
  4. L. Bi, J. Hu, P. Jiang, D Kim, G. F. Dionne, L. C. Kimerling, and C. A. Ross, “On-chip optical isolation in monolithically integrated non-reicprocal optical resonators,” Nature Photon.5, 758–762 (2011). [CrossRef]
  5. N. Bahlmann, M. Lohmeyer, H. Dotsch, and P. Hertel, “Finite-element analysis of nonreciprocal phase shift for TE modes in magnetooptic rib waveguides with a compensation wall,” IEEE J. Quantum Electron.35, 250–253 (1999). [CrossRef]
  6. A. F. Popkov, “Nonreciprocal TE-mode phase shift by domain walls in magnetooptic rib waveguides,” Appl. Phys. Lett.72, 2508–2510 (1998). [CrossRef]
  7. R. Y. Chen, G. M. Jiang, Y. L. Hao, J. Y. Yang, M. H. Wang, and X. Q. Jiang, “Enhancement of nonreciprocal phase shift by using nanoscale air gap,” Opt. Lett.35, 1335–1337 (2010). [CrossRef] [PubMed]
  8. W. F. Zhang, J. W. Mu, W. P. Huang, and W. Zhao, “Enhancement of nonreciprocal phase shift by magneto-optical slot waveguide with a compensation wall,” Appl. Phys. Lett.98, 171109 (2011). [CrossRef]
  9. J. B. Khurgin, “Optical isolating action in surface plasmon polaritons,” Appl. Phys. Lett.89, 251115 (2006). [CrossRef]
  10. Y. Shoji and T. Mizumoto, “Ultra-wideband design of waveguide magnetooptical isolator operating in 1.31μm and 1.55μm band,” Opt. Express15, 639–645 (2007), http://www.opticsinfobase.org/abstract.cfm?URI=oe-15-2-639 . [CrossRef] [PubMed]
  11. Y. Shoji and T. Mizumoto, “Wideband design of nonreciprocal phase shift magneto-optical isolators using phase adjustment in Mach-Zehnder interferometer,” Appl. Opt.45, 7144–7150 (2006). [CrossRef] [PubMed]
  12. M. C. Tien, T. Mizumoto, P. Pintus, H. Kromer, and J. Bowers, “Silicon ring resonators with bonded nonreciprocal magneto-optic garnets,” Opt. Express19, 11740–11745 (2011), http://www.opticsinfobase.org/abstract.cfm?URI=oe-15-2-639 . [CrossRef] [PubMed]
  13. N. Kono, K. Kakihara, K. Saitoh, and M. Koshiba, “Nonreciprocal microresonators for the miniaturization of optical waveguide isolators,” Opt. Express15, 7737–7751 (2007), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-15-12-7737 . [CrossRef] [PubMed]
  14. K. Sakoda, Optical Properties of Photonic Crystals, 2nd ed. (Springer-Verlag, 2004).
  15. H. Dotsch, P. Hertel, B. Luhrmann, S. Sure, H. P. Winkler, and M. Ye, “Applications of magnetic garnet films in integrated optics,” IEEE Trans. Magn.28, 2979–2984 (1992). [CrossRef]
  16. J. A. Dionne, L. A. Sweatlock, H. A. Atwater, and A. Polman, “Planar metal plasmon waveguides: frequency-dependent dispersion, propagation, localization, and loss beyond the free electron model,” Phys. Rev. B72, 075405 (2005). [CrossRef]
  17. J. A. Nelder and R. Mead, “A simplex method for function minimization,” Comput. J.7, 308–313 (1965).
  18. E. Anemogiannis, E. N. Glytsis, and T. K. Gaylord, “Determination of guided and leaky modes in lossless and lossy planar multilayer optical waveguides: reflection pole method and wavevector density method,” J. Lightwave Technol.17, 929–941 (1999). [CrossRef]
  19. Z. K. Wang, “An implementation of Kuhn’s rootfinding algorithm for polynomials and related discussion,” J. Numer. Methods Comput. Appl.3, 175–181 (1981).
  20. Y. L. Long, X. L. Wen, and C. F. Xie, “An implementation of a root-finding algorithm for transcendental functions in a complex plane,” J. Numer. Methods Comput. Appl.2, 88–92 (1994).
  21. S. Yamamoto and T. Makimoto, “Circuit theory for a class of anisotropic and gyrotropic thin-film optical waveguides and design of nonreciprocal devices for integrated optics,” J. Appl. Phys.45, 882–888 (1974). [CrossRef]
  22. H. Dotsch, N. Bahlmann, O. Zhuromskyy, M. Hammer, L. Wilkens, R. Gerhardt, P. Hertel, and A. F. Popkov, “Applications of magneto-optical waveguides in integrated optics: review,” J. Opt. Soc. Am. B22, 240–253 (2005). [CrossRef]
  23. M. Fehndrich, A. Josef, L. Wilkens, J. Kleine-Borger, N. Bahlmann, M. Lohmeyer, P. Hertel, and H. Dotsch, “Experimental investigation of the nonreciprocal phase shift of a transverse electric mode in a magnetic-optic rib waveguide,” Appl. Phys. Lett.74, 2918–2920 (1999). [CrossRef]
  24. M. J. Adams, An Introduction to Optical Waveguides (John Wiley and Sons, 1980).
  25. P. Berini and I. D. Leon, “Surface plasmon-polariton amplifiers and lasers,” Nature Photon.6, 16–24 (2012). [CrossRef]
  26. E. D. Palik, Handbook of Optical Constants of Solids (Academic Press, 1998).
  27. I. Avrutsky, R. Soref, and W. Buchwald, “Sub-wavelength plasmonic modes in a conductor-gap-dielectric system with a nanoscale gap,” Opt. Express18, 348–363 (2009), http://www.opticsinfobase.org/abstract.cfm?URI=oe-18-1-348 [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited