OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 8 — Apr. 9, 2012
  • pp: 8284–8295

Ultimate resolution for refractometric sensing with whispering gallery mode microcavities

J.W. Silverstone, S. McFarlane, C.P.K. Manchee, and A. Meldrum  »View Author Affiliations

Optics Express, Vol. 20, Issue 8, pp. 8284-8295 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (1346 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Many proposed microfluidic biosensor designs are based on the measurement of the resonances of an optical microcavity. Fluorescence-based resonators tend to be simpler and more robust than setups that use evanescent coupling from tuneable laser to probe the cavity. In all sensor designs the detection limits depend on the wavelength resolution of the detection system, which is a limitation of fluorescence-based devices. In this work, we explore the ultimate resolution and detection limits of refractometric microcavity sensor structures. Because many periodic modes are collected simultaneously from fluorescent resonators, standard Fourier methods can be best suited for rapid and precise analysis of the resonance shifts. Simple numerical expressions to calculate the ultimate sensor resolution and detection limits were found, and the results compared to experiments in which the resonances of fluorescent-core microcapillaries responded to various sucrose concentrations in water.

© 2012 OSA

OCIS Codes
(070.4790) Fourier optics and signal processing : Spectrum analysis
(230.5750) Optical devices : Resonators
(070.2025) Fourier optics and signal processing : Discrete optical signal processing
(140.3948) Lasers and laser optics : Microcavity devices

ToC Category:

Original Manuscript: January 11, 2012
Revised Manuscript: February 27, 2012
Manuscript Accepted: March 4, 2012
Published: March 26, 2012

Virtual Issues
Vol. 7, Iss. 6 Virtual Journal for Biomedical Optics

J.W. Silverstone, S. McFarlane, C.P.K. Manchee, and A. Meldrum, "Ultimate resolution for refractometric sensing with whispering gallery mode microcavities," Opt. Express 20, 8284-8295 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. K. E. Herold and A. Rasooly, eds., Lab-on-a-Chip Technology: Fabrication and Microfluidics. Caister Academic Press, 2009.
  2. J. J. Amsden, P. Domachuk, A. Gopinath, and R. D. White, “L. D. Negro D. L Kaplan and F. G. Omenetto, “Biocompatible films: rapid nanoimprinting of silk fibroin films for biophotonic applications,” Adv. Mater. (Deerfield Beach Fla.)22, 1–4 (2010).
  3. A. H. Diercks, A. Ozinsky, C. L. Hansen, J. M. Spotts, D. J. Rodriguez, and A. Aderem, “A microfluidic device for multiplexed protein detection in nano-liter volumes,” Anal. Biochem.386(1), 30–35 (2009). [CrossRef] [PubMed]
  4. D. Erickson, S. Mandal, A. H. J. Yang, and B. Cordovez, “Nanobiosensors: optofluidic, electrical and mechanical approaches to biomolecular detection at the nanoscale,” Microfluid. Nanofluid.4(1-2), 33–52 (2008). [CrossRef] [PubMed]
  5. F. Vollmer and S. Arnold, “Whispering-gallery-mode biosensing: label-free detection down to single molecules,” Nat. Methods5(7), 591–596 (2008). [CrossRef] [PubMed]
  6. A. M. Armani, R. P. Kulkarni, S. E. Fraser, R. C. Flagan, and K. J. Vahala, “Label-free, single-molecule detection with optical microcavities,” Science317(5839), 783–787 (2007). [CrossRef] [PubMed]
  7. N. Jokerst, M. Royal, S. Palit, L. Luan, S. Dhar, and T. Tyler, “Chip scale integrated microresonator sensing systems,” J. Biophotonics2(4), 212–226 (2009). [CrossRef] [PubMed]
  8. I. M. White, H. Oveys, and X. Fan, “Liquid-core optical ring-resonator sensors,” Opt. Lett.31(9), 1319–1321 (2006). [CrossRef] [PubMed]
  9. I. M. White, H. Zhu, J. D. Suter, N. M. Hanumegowda, H. Oveys, M. Zourob, and X. Fan, “Refractometric sensors for lab-on-a-chip based on optical ring resonators,” IEEE Sens. J.7(1), 28–35 (2007). [CrossRef]
  10. V. Zamora, A. Díez, M. V. Andrés, and B. Gimeno, “Refractometric sensor based on whispering-gallery modes of thin capillarie,” Opt. Express15(19), 12011–12016 (2007). [CrossRef] [PubMed]
  11. S. Arnold, M. Khoshsima, I. Teraoka, S. Holler, and F. Vollmer, “Shift of whispering-gallery modes in microspheres by protein adsorption,” Opt. Lett.28(4), 272–274 (2003). [CrossRef] [PubMed]
  12. A. Francois and M. Himmelhaus, “Optical biosensor based on whispering gallery mode excitations in clusters of microparticles,” Appl. Phys. Lett.92(14), 141107 (2008). [CrossRef]
  13. F. Vollmer, S. Arnold, and D. Keng, “Single virus detection from the reactive shift of a whispering-gallery mode,” Proc. Natl. Acad. Sci. U.S.A.105(52), 20701–20704 (2008). [CrossRef] [PubMed]
  14. P. Bianucci, J. R. Rodríguez, C. M. Clements, J. G. C. Veinot, and A. Meldrum, “Silicon nanocrystal luminescence coupled to whispering gallery modes in optical fibers,” J. Appl. Phys.105(2), 023108 (2009). [CrossRef]
  15. I. M. White and X. Fan, “On the performance quantification of resonant refractive index sensors,” Opt. Express16(2), 1020–1028 (2008). [CrossRef] [PubMed]
  16. H. T. Beier, G. L. Coté, and K. E. Meissner, “Modeling whispering gallery modes in quantum dot embedded polystyrene microspheres,” J. Opt. Soc. Am. B27(3), 536–543 (2010). [CrossRef]
  17. S. Pang, R. E. Beckham, and K. E. Meissner, “Quantum dot-embedded microspheres for remote refractive index sensing,” Appl. Phys. Lett.92(22), 221108 (2008). [CrossRef] [PubMed]
  18. D. E. Gómez, I. Pastoriza-Santos, and P. Mulvaney, “Tunable whispering gallery mode emission from quantum-dot-doped microspheres,” Small1(2), 238–241 (2005). [CrossRef] [PubMed]
  19. A. Salinas-Castillo, M. Camprubí-Robles, and R. Mallavia, “Synthesis of a new fluorescent conjugated polymer microsphere for chemical sensing in aqueous media,” Chem. Commun. (Camb.)46(8), 1263–1265 (2010). [CrossRef] [PubMed]
  20. A. Beltaos and A. Meldrum, “Whispering gallery modes in silicon-nanocrystal-coated silica microspheres,” J. Lumin.126(2), 607–613 (2007). [CrossRef]
  21. E. Nuhiji and P. Mulvaney, “Detection of unlabeled oligonucleotide targets using whispering gallery modes in single, fluorescent microspheres,” Small3(8), 1408–1414 (2007). [CrossRef] [PubMed]
  22. A. Weller, F. C. Liu, R. Dahint, and M. Himmelhaus, “Whispering gallery mode biosensors in the low-Q limit,” Appl. Phys. B90(3-4), 561–567 (2008). [CrossRef]
  23. M. Charlebois, A. Paquet, L. S. Verret, K. Boissinot, M. Boissinot, M. G. Bergeron, and C. N. Allen, “Toward automatic label-free whispering gallery modes biodetection with a quantum dot-coated microsphere population,” Nanoscale Res. Lett.5(3), 524–532 (2010). [CrossRef] [PubMed]
  24. A. G. Piersol, “Time delay estimation using phase data,” IEEE Trans. Acoust. Speech Signal Process.29(3), 471–477 (1981). [CrossRef]
  25. W. C. Karl and H. H. Pien, “High-resolution biosensor spectral peak shift estimation,” IEEE Trans. Signal Process.53(12), 4631–4639 (2005). [CrossRef]
  26. M. Suematsu and M. Takeda, “Wavelength-shift interferometry for distance measurements using the Fourier transform technique for fringe analysis,” Appl. Opt.30(28), 4046–4055 (1991). [CrossRef] [PubMed]
  27. F. Bruyneel, H. De Smet, J. Vanfleteren, and A. Van Calster, “Method for measuring the cell gap in liquid-crystal displays,” Opt. Eng.40(2), 259–267 (2001). [CrossRef]
  28. C. M. Hessel, M. A. Summers, A. Meldrum, M. Malac, and J. G. C. Veinot, “Direct patterning, conformal coating, and erbium doping of luminescent nc-Si/SiO2 thin films from solution processable hydrogen silsesquioxane,” Adv. Mater. (Deerfield Beach Fla.)19(21), 3513–3516 (2007). [CrossRef]
  29. C. P. K. Manchee, V. Zamora, J. W. Silverstone, J. G. C. Veinot, and A. Meldrum, “Refractometric sensing with fluorescent-core microcapillaries,” Opt. Express19(22), 21540–21551 (2011). [CrossRef] [PubMed]
  30. A. W. Poon, R. K. Chang, and J. A. Lock, “Spiral morphology-dependent resonances in an optical fiber: effects of fiber tilt and focused Gaussian beam illumination,” Opt. Lett.23(14), 1105–1107 (1998). [CrossRef] [PubMed]
  31. A. L. Stancik and E. B. Brauns, “A simple asymmetric lineshape for fitting infrared absorption spectra,” Vib. Spectrosc.47(1), 66–69 (2008). [CrossRef]
  32. N. R. Lomb, “Least-squares frequency analysis of unequally spaced data,” Astrophys. Space Sci.39(2), 447–462 (1976). [CrossRef]
  33. Santa Barbara Instruments Group, http://www.sbig.com/site/ , Pers. Comm.
  34. V. Zamora, A. Diez, M. V. Andres, and B. V. Gimeno, “Cylindrical optical microcavities: basic properties and sensor applications,” Photonics and Nanostructures – Fundamentals and Applications 9, 149–158 (2011); also V. Zamora and A. Meldrum, unpublished results.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited