OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 8 — Apr. 9, 2012
  • pp: 8367–8396

Quantum frequency translation by four-wave mixing in a fiber: low-conversion regime

L. Mejling, C. J. McKinstrie, M. G. Raymer, and K. Rottwitt  »View Author Affiliations

Optics Express, Vol. 20, Issue 8, pp. 8367-8396 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (1894 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



In this paper we consider frequency translation enabled by Bragg scattering, a four-wave mixing process. First we introduce the theoretical background of the Green function formalism and the Schmidt decomposition. Next the Green functions for the low-conversion regime are derived perturbatively in the frequency domain, using the methods developed for three-wave mixing, then transformed to the time domain. These results are also derived and verified using an alternative time-domain method, the results of which are more general. For the first time we include the effects of convecting pumps, a more realistic assumption, and show that separability and arbitrary reshaping is possible. This is confirmed numerically for Gaussian pumps as well as higher-order Hermite-Gaussian pumps.

© 2012 OSA

OCIS Codes
(060.4370) Fiber optics and optical communications : Nonlinear optics, fibers
(190.4380) Nonlinear optics : Nonlinear optics, four-wave mixing
(270.5585) Quantum optics : Quantum information and processing

ToC Category:
Nonlinear Optics

Original Manuscript: February 13, 2012
Revised Manuscript: March 16, 2012
Manuscript Accepted: March 16, 2012
Published: March 26, 2012

L. Mejling, C. J. McKinstrie, M. G. Raymer, and K. Rottwitt, "Quantum frequency translation by four-wave mixing in a fiber: low-conversion regime," Opt. Express 20, 8367-8396 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. S. Tanzilli, W. Tittel, M. Halder, O. Alibart, P. Baldi, N. Gisin, and H. Zbinden, “A photonic quantum information interface,” Nature (London) 437, 116–120 (2005). [CrossRef]
  2. H. J. Kimble, “The quantum internet,” Nature (London) 453, 1023–1030 (2008). [CrossRef]
  3. C. K. Hong, Z. Y. Ou, and L. Mandel, “Measurement of subpicosecond time intervals between two photons by interference,” Phys. Rev. Lett. 59, 2044–2046 (1987). [CrossRef] [PubMed]
  4. E. Knill, R. Laflamme, and G. J. Milburn, “A scheme for efficient quantum computation with linear optics,” Nature (London) 409, 46–52 (2001). [CrossRef]
  5. I. A. Walmsley and M. G. Raymer, “Toward quantum-information processing with photons,” Science 307, 1733–1734 (2005). [CrossRef] [PubMed]
  6. A. Ferraro, M. G. A. Paris, M. Bondani, A. Allevi, E. Puddu, and A. Andreoni “Three-mode entanglement by interlinked nonlinear interactions in optical χ(2) media,” J. Opt. Soc. Am. B 21, 1241–1249 (2004). [CrossRef]
  7. A. V. Rodionov and A. S. Chirkin, “Entangled photon states in consecutive nonlinear optical interactions,” JETP Lett. 79, 253–256 and 582 (2004).
  8. O. Pfister, S. Feng, G. Jennings, R. C. Pooser, and D. Xie, “Multipartite continuous-variable entanglement from concurrent nonlinearities,” Phys. Rev. A 70, 020302 (2004). [CrossRef]
  9. R. C. Pooser and O. Pfister, “Observation of triply coincident nonlinearities in periodically poled KTiOPO4,” Opt. Lett. 30, 2635–2637 (2005). [CrossRef] [PubMed]
  10. A. S. Villar, M. Martinelli, C. Fabre, and P. Nussenzveig, “Direct production of tripartite pump-signal-idler entanglement in the above-threshold optical parametric oscillator,” Phys. Rev. Lett. 97, 140504 (2006). [CrossRef] [PubMed]
  11. K. N. Cassemiro, A. S. Villar, P. Valente, M. Martinelli, and P. Nussenzveig, “Experimental observation of three-color optical quantum correlations,” Opt. Lett. 32, 695–697 (2007). [CrossRef] [PubMed]
  12. W. Wasilewski and M. G. Raymer, “Pairwise entanglement and readout of atomic-ensemble and optical wave-packet modes in traveling-wave Raman interactions,” Phys. Rev. A 73, 063816 (2006). [CrossRef]
  13. D. Kielpinski, J. Corney, and H. Wiseman, “Quantum optical waveform conversion,” Phys. Rev. Lett. 106, 130501 (2011). [CrossRef] [PubMed]
  14. A. Eckstein, B. Brecht, and C. Silberhorn, “A quantum pulse gate based on spectrally engineered sum frequency generation,” Opt. Express 19, 13770–13778 (2011). [CrossRef] [PubMed]
  15. W. K. Wootters and W. H. Zurek, “A single quantum cannot be cloned,” Nature (London) 299, 802–803 (1982). [CrossRef]
  16. W. H. Louisell, A. Yariv, and A. E. Siegman, “Quantum fluctuations and noise in parametric processes I,” Phys. Rev. 124, 1646–1653 (1961). [CrossRef]
  17. J. P. Gordon, W. H. Louisell, and L. R. Walker, “Quantum fluctuations and noise in parametric processes II,” Phys. Rev. 129, 481–485 (1963). [CrossRef]
  18. J. Huang and P. Kumar, “Observation of quantum frequency conversion,” Phys. Rev. Lett. 68, 2153–2156 (1992). [CrossRef] [PubMed]
  19. A. P. Vandevender and P. G. Kwiat, “High efficiency single photon detection via frequency up-conversion,” J. Mod. Opt. 51, 1433–1445 (2004).
  20. M. A. Albota and F. N. C. Wong, “Efficient single-photon counting at 1.55 μm by means of frequency upconversion,” Opt. Lett. 29, 1449–1451 (2004). [CrossRef] [PubMed]
  21. R. V. Roussev, C. Langrock, J. R. Kurz, and M. M. Fejer, “Periodically poled lithium niobate waveguide sum-frequency generator for efficient single-photon detection at communication wavelengths,” Opt. Lett. 29, 1518–1520 (2004). [CrossRef] [PubMed]
  22. Y. Ding and Z. Y. Ou, “Frequency downconversion for a quantum network,” Opt. Lett. 35, 2591–2593 (2010). [CrossRef] [PubMed]
  23. B. Brecht, A. Eckstein, A. Christ, H. Suche, and C. Silberhorn, “From quantum pulse gate to quantum pulse shaper–engineered frequency conversion in nonlinear optical waveguides,” New J. Phys. 13, 065029 (2011). [CrossRef]
  24. C. Clausen, I. Usmani, F. Bussières, N. Sangouard, M. Afzelius, H. de Riedmatten, and N. Gisin, “Quantum storage of photonic entanglement in a crystal,” Nature (London) 469, 508–511 (2011). [CrossRef]
  25. E. Saglamyurek, N. Sinclair, J. Jin, J. Slater, D. Oblak, F. Bussières, M. George, R. Ricken, W. Sohler, and W. Tittel, “Broadband waveguide quantum memory for entangled photons,” Nature (London) 469, 512–515 (2011). [CrossRef]
  26. C. J. McKinstrie, J. D. Harvey, S. Radic, and M. G. Raymer, “Translation of quantum states by four-wave mixing in fibers,” Opt. Express 13, 9131–9142 (2005). [CrossRef] [PubMed]
  27. K. Inoue, “Tunable and selective wavelength conversion using fiber four-wave mixing with two pump lights,” IEEE Photon Technol. Lett. 6, 1451–1453 (1994). [CrossRef]
  28. M. E. Marhic, Y. Park, F. S. Yang, and L. G. Kazovsky, “Widely tunable spectrum translation and wavelength exchange by four-wave mixing in optical fibers,” Opt. Lett. 21, 1906–1908 (1996). [CrossRef] [PubMed]
  29. K. Uesaka, K. K. Wong, M. E. Marhic, and L. G. Kazovsky, “Wavelength exchange in a highly nonlinear dispersion-shifted fiber: theory and experiments,” IEEE J. Sel. Top. Quantum Electron. 8, 560–568 (2002). [CrossRef]
  30. T. Tanemura, C. S. Goh, K. Kikuchi, and S. Y. Set, “Highly efficient arbitrary wavelength conversion within entire C-band based on nondegenerate fiber four-wave mixing,” IEEE Photon. Technol. Lett. 16, 551–553 (2004). [CrossRef]
  31. A. H. Gnauck, R. M. Jopson, C. J. McKinstrie, J. C. Centanni, and S. Radic, “Demonstration of low-noise frequency conversion by Bragg scattering in a fiber,” Opt. Express 14, 8989–8994 (2006). [CrossRef] [PubMed]
  32. D. Méchin, R. Provo, J. D. Harvey, and C. J. McKinstrie, “180-nm wavelength conversion based on Bragg scattering in an optical fiber,” Opt. Express 14, 8995–8999 (2006). [CrossRef] [PubMed]
  33. H. J. McGuinness, M. G. Raymer, C. J. McKinstrie, and S. Radic, “Wavelength translation across 210 nm in the visible using vector Bragg scattering in a birefringent photonic crystal fiber,” IEEE Photon. Technol. Lett. 23, 109–111 (2011). [CrossRef]
  34. H. J. McGuinness, M. G. Raymer, C. J. McKinstrie, and S. Radic, “Quantum frequency translation of single-photon states in a photonic crystal fiber,” Phys. Rev. Lett. 105, 093604 (2010). [PubMed]
  35. C. J. McKinstrie, H. Kogelnik, R. M. Jopson, S. Radic, and A. V. Kanaev, “Four-wave mixing in fibers with random birefringence,” Opt. Express 12, 2033–2055 (2004). [CrossRef] [PubMed]
  36. C. J. McKinstrie, M. Yu, M. G. Raymer, and S. Radic, “Quantum noise properties of parametric processes,” Opt. Express 13, 4986–5012 (2005). [CrossRef] [PubMed]
  37. M. G. Raymer, S. J. van Enk, C. J. McKinstrie, and H. J. McGuinness, “Interference of two photons of different color,” Opt. Commun. 283, 747–752 (2010). [CrossRef]
  38. H. J. McGuinness, M. G. Raymer, and C. J. McKinstrie, “Theory of quantum frequency translation of light in optical fiber: application to interference of two photons of different color,” Opt. Express 19, 17876–17907 (2011). [CrossRef] [PubMed]
  39. K. Inoue, “Polarization effect on four-wave mixing efficiency in a single-mode fiber,” IEEE J. Quantum Electron. 28, 883–894 (1992). [CrossRef]
  40. M. E. Marhic, K. K. Y. Wong, and L. G. Kazovsky, “Fiber optical parametric amplifiers with linearly or circularly polarized waves,” J. Opt. Soc. Am. B 20, 2425–2433 (2003). [CrossRef]
  41. C. J. McKinstrie, H. Kogelnik, and L. Schenato, “Four-wave mixing in a rapidly-spun fiber,” Opt. Express 14, 8516–8534 (2006). [CrossRef] [PubMed]
  42. X. Li, P. L. Voss, J. Chen, K. F. Lee, and P. Kumar, “Measurement of co- and cross-polarized Raman spectra in silica fiber for small detunings,” Opt. Express 13, 2236–2244 (2005). [CrossRef] [PubMed]
  43. R. Loudon, The Quantum Theory of Light, 3rd. ed. (Oxford University Press, 2000).
  44. C. K. Law, I. A. Walmsley, and J. H. Eberly, “Continuous frequency entanglement: effective finite Hilbert space and entropy control,” Phys. Rev. Lett. 84, 5304–5307 (2000). [CrossRef] [PubMed]
  45. C. J McKinstrie, “Unitary and singular value decompositions of parametric processes in fibers,” Opt. Commun. 282, 583–593 (2009). [CrossRef]
  46. R. A. Horn and C. R. Johnson, Matrix Analysis (Cambridge University Press, 1990).
  47. M. P. des Chênes, “Mémoire sur les séries et sur l’intégration complète d’une équation aux différences partielles linéaire du second ordre, à coefficients constants,” Mémoires présentés à l’Institut des Sciences, Lettres et Arts, par divers savans, et lus dans ses assembleés. Sciences, mathématiques et physiques, 638–648 (1806). [PubMed]
  48. W. P. Grice, A. B. U’Ren, and I. A. Walmsley, “Eliminating frequency and space-time correlations in multiphoton states,” Phys. Rev. A 64, 063815 (2001). [CrossRef]
  49. A. B. U’Ren, C. Silberhorn, K. Banaszek, I. A. Walmsley, R. Erdmann, W. P. Grice, and M. G. Raymer, “Generation of pure-state single-photon wavepackets by conditional preparation based on spontaneous parametric downconversion,” Laser Phys. 15, 146–161 (2005).
  50. G. B. Whitham, Linear and Nonlinear Waves (Wiley, 1974), Chap. 2.
  51. J. Goodman, Introduction to Fourier Optics (McGraw-Hill, 1968).
  52. G. F. Simmons, Differential Equations with Applications and Historical Notes, 2nd. ed. (McGraw-Hill, 1991).
  53. C. J. McKinstrie and D. S. Cargill, “Simultaneous frequency conversion, regeneration and reshaping of optical signals,” Opt. Express 20, 6881–6886 (2012). [CrossRef]
  54. F. G. Mehler, “Über die Entwicklung einer Funktion von beliebig vielen Variablen nach Laplaceshen Functionen höherer Ordnung,” Journal für die reine und angewandte Mathematik, 161–176 (1866). [CrossRef] [PubMed]
  55. P. M. Morse and H. Feschbach, Methods of Theoretical Physics (McGraw-Hill, 1953), pp. 781 and 786.
  56. E. Schmidt, “Zur Theorie der linearen und nichtlinearen Integralgleichungen,” Mathematische Annalen 63, 433–476 (1907). [CrossRef]
  57. B. L. Moiseiwitsch, Integral Equations (Dover, 2005).
  58. C. J. McKinstrie and J. P. Gordon, “Field fluctuations produced by parametric processes in fibers,” IEEE J. Sel. Top. Quantum Electron. 18, 958–969 (2012). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited